Using a drug repurposing strategy to virtually screen potential HIV-1 entry inhibitors that block the NHR domain of the viral envelope protein gp41
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 77-95

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a drug repurposing strategy, virtual screening of potential inhibitors of the NHR domain of the HIV-1 gp41 protein, a conserved region critical for the virus-cell membrane fusion and viral infectivity, was carried out. The used computational approach included: (1) molecular docking of this functionally significant region of the HIV-1 envelope with compounds from a library of bioactive molecules containing clinically approved drugs, experimental drugs, and investigational drug candidates; (2) assessing the binding affinity of these compounds to the therapeutic target; (3) molecular dynamics simulations of ligand/NHR-gp41 complexes; (4) calculations of the binding free energy followed by the analysis of molecular dynamics trajectories and selection of compounds promising to test for anti-HIV-1 activity. As a result, six compounds that exhibited the high binding affinity to the NHR domain of the HIV-1 gp41 protein and showed acceptable pharmacological properties were identified. The predicted compounds are assumed to form a promising basis for the development of new, effective and safe broad-spectrum antiviral agents able to inhibit the HIV-1 entry into the host cell.
@article{MBB_2024_19_1_a4,
     author = {A. M. Andrianov and Ya. V. Laykov and A. V. Tuzikov},
     title = {Using a drug repurposing strategy to virtually screen potential {HIV-1} entry inhibitors that block the {NHR} domain of the viral envelope protein gp41},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {77--95},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a4/}
}
TY  - JOUR
AU  - A. M. Andrianov
AU  - Ya. V. Laykov
AU  - A. V. Tuzikov
TI  - Using a drug repurposing strategy to virtually screen potential HIV-1 entry inhibitors that block the NHR domain of the viral envelope protein gp41
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 77
EP  - 95
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a4/
LA  - ru
ID  - MBB_2024_19_1_a4
ER  - 
%0 Journal Article
%A A. M. Andrianov
%A Ya. V. Laykov
%A A. V. Tuzikov
%T Using a drug repurposing strategy to virtually screen potential HIV-1 entry inhibitors that block the NHR domain of the viral envelope protein gp41
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 77-95
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a4/
%G ru
%F MBB_2024_19_1_a4
A. M. Andrianov; Ya. V. Laykov; A. V. Tuzikov. Using a drug repurposing strategy to virtually screen potential HIV-1 entry inhibitors that block the NHR domain of the viral envelope protein gp41. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 77-95. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a4/

[1] D. Lyumkis, J. P. Julien, N. de Val, A. Cupo, C. S. Potter, P. J. Klasse, D. R. Burton, R. W. Sanders, J. P. Moore, B. Carragher, I. A. Wilson, A. B. Ward, “Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer”, Science, 342 (2013), 1484–1490 | DOI | DOI

[2] J. P. Julien, A. Cupo, D. Sok, R. L. Stanfield, D. Lyumkis, M. C. Deller, P. J. Klasse, D. R. Burton, R. W. Sanders, J. P. Moore, A. W. Ward, I. A. Wilson, “Crystal structure of a soluble cleaved HIV-1 envelope trimer”, Science, 342 (2013), 1477–1483 | DOI | DOI

[3] F. Cocchi, A. L. DeVico, A. Garzino-Demo, A. Cara, R. C. Gallo, P. Lusso, “The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection”, Nat. Med, 2 (1996), 1244–1247 | DOI | DOI

[4] Y. Feng, C. C. Broder, P. E. Kennedy, E. A. Berger, “HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor”, Science, 272 (1996), 872–877 | DOI | DOI

[5] C. B. Wilen, J. C. Tilton, R. W. Doms, “HIV: Cell binding, entry”, Cold Spring Harb. Perspect. Med, 2 (2012), a006866 | DOI | DOI

[6] D. C. Chan, D. Fass, J. M. Berger, P. S. Kim, “Core structure of gp41 from the HIV envelope glycoprotein”, Cell, 89:2 (1997), 263–273 | DOI | DOI

[7] W. Weissenhorn, A. Dessen, S. C. Harrison, J. J. Skehel, D. C. Wiley, “Atomic structure of the ectodomain from HIV-1 gp41”, Nature, 387:6631 (1997), 426–430 | DOI | DOI

[8] K. Tan, J. Liu, J. Wang, S. Shen, M. Liu, “Atomic structure of a thermostable subdomain of HIV-1 gp41”, Proc. Natl. Acad. Sci. USA, 94:23 (1997), 12303–12308 | DOI | DOI

[9] D. C. Chan, C. T. Chutkowski, P. S. Kim, “Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target”, Proc. Natl. Acad. Sci. USA, 95:26 (1998), 15613–15617 | DOI | DOI

[10] E. J. Arts, D. J. Hazuda, “HIV-1 antiretroviral drug therapy”, Cold Spring Harb. Perspect. Med, 2 (2012) | DOI | Zbl | DOI | Zbl

[11] G. Kumari, R. K. Singh, “Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario”, HIV AIDS Rev, 11 (2012), 5–14 | DOI | DOI

[12] T. Matthews, M. Salgo, M. Greenberg, J. Chung, R. DeMasi, D. Bolognesi, “Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes”, Nat. Rev. Drug Discov, 3 (2004), 215–225 | DOI | DOI

[13] M. Kozal, J. Aberg, G. Pialoux, P. Cahn, M. Thompson, J. M. Molina, B. Grinsztejn, R. Diaz, A. Castagna, P. Kumar, G. Latiff, E. DeJesus et al, “Fostemsavir in adults with multidrug-resistant HIV-1 infection”, N. Engl. J. Med, 382 (2020), 1232–1243 (for the BRIGHTE Trial Team) | DOI | DOI

[14] E. B. Chahine, “Fostemsavir: The first oral attachment inhibitor for treatment of HIV-1 infection”, Am. J. Health Syst. Pharm, 78:5 (2021), 376–388 | DOI | DOI

[15] R. D. MacArthur, R. M. Novak, “Maraviroc: The first of a new class of antiretroviral agents”, Clin. Infect. Dis, 47 (2008), 236–241 | DOI | DOI

[16] R. L. Bettiker, D. E. Koren, J. M. Jacobson, “Ibalizumab”, Curr. Opin. HIV AIDS, 13:4 (2018), 354–358 | DOI | DOI

[17] S. A. Rizza, R. Bhatia, J. Zeuli, Z. Temesgen, “Ibalizumab for the treatment of multidrug resistant HIV-1 infection”, Drugs Today (Barc), 55:1 (2019), 25–34 | DOI | DOI

[18] H. A. Blair, “Ibalizumab: A Review in multidrug-resistant HIV-1 infection”, Drugs, 80:2 (2020), 189–196 | DOI | DOI

[19] Y. T. Lai, “Small molecule HIV-1 attachment inhibitors. Discovery, mode of action and structural basis of inhibition”, Viruses, 13 (2021), 843 | DOI | DOI

[20] S. Jiang, A. V. Tuzikov, A. M. Andrianov, “Small-molecule HIV-1 entry inhibitors targeting the epitopes of broadly neutralizing antibodies”, Cell Chem. Biol, 29:5 (2022), 757–773 | DOI | DOI

[21] K. Park, “A review of computational drug repurposing”, Transl. Clin. Pharmacol, 27:2 (2019), 59–63 | DOI | DOI

[22] S. Pushpakom, F. Iorio, P. A. Eyers, K. J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee, A. Norris, P. Sanseau, D. Cavalla, M. Pirmohamed, “Drug repurposing: progress, challenges and recommendations”, Nat. Rev. Drug Discov, 18:1 (2019), 41–58 | DOI | DOI

[23] P. Zhan, B. Yu, L. Ouyang, “Drug repurposing: An effective strategy to accelerate contemporary drug discovery”, Drug Discov. Today, 27:7 (2022), 1785–1788 | DOI | DOI

[24] A. M. Andrianov, K. V. Furs, A. V. Gonchar, L. A. Aslanyan, A. V. Tuzikov, “Primenenie tekhnologii virtualnogo skrininga i molekulyarnogo modelirovaniya dlya identifikatsii potentsialnykh ingibitorov osnovnoi proteazy koronavirusa SARS-CoV-2”, Mat. biol. i bioinf, 18:1 (2023), 15–32 | DOI | DOI

[25] J. Fanke, A. Andrianov, L. Wang, K. Furs, A. Gonchar, Q. Wang, W. Xu, L. Lu, S. Xia, A. Tuzikov, S. Jiang, “Repurposing Navitoclax to block SARS-CoV-2 fusion and entry by targeting heptapeptide repeat sequence 1 in S2 protein”, J. Med. Virol., 95:10 (2023), e29145 | DOI | DOI

[26] K. Palacio-Rodriguez, I. Lans, C. N. Cavasotto, P. Cossio, “Exponential consensus ranking improves the outcome in docking and receptor ensemble docking”, Sci. Rep, 9:1 (2019) | DOI | DOI

[27] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, M. Wilson, “DrugBank 5.0: a major update to the DrugBank database for 2018”, Nucl. Acids Res., 46 (2017), D1074-D1082 | DOI | DOI

[28] T. Sterling, J. J. Irwin, “ZINC 15 Ligand discovery for everyone”, J. Chem. Inf. Model, 55:11 (2015), 2324–2337 | DOI | DOI

[29] Landrum G., The RDKit documentation, (data obrascheniya: 26/03/2024) https://www.rdkit.org/docs/

[30] O. Trott, A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, J. Comp. Chem, 31 (2010), 455–461 | DOI | DOI

[31] X. Zhang, Y. Zhu, H. Hu, S. Zhang, P. Wang, H. Chong, He J, X. Wang, Y. He, “Structural insights into the mechanisms of action of short-peptide HIV-1 fusion inhibitors targeting the Gp41 pocket”, Front. Cell. Infect. Microbiol, 8 (2018), 51 | DOI | DOI

[32] J. C. Gordon, J. B. Myers, T. Folta, V. Shoja, L. S. Heath, A. Onufriev, “H++: a server for estimating pKas and adding missing hydrogens to macromolecules”, Nucl. Acids Res., 33, suppl. 2 (2005), W368-W371 | DOI | DOI

[33] M. Wojcikowski, P. Ballester, P. Siedlecki, “Performance of machine-learning scoring functions in structure-based virtual screening”, Sci. Rep, 7 (2017), 46710 | DOI | DOI

[34] J. D. Durrant, J. A. McCammon, “NNScore 2.0: A neural-network receptor-ligand scoring function”, J. Chem. Inf. Model, 51:11 (2011), 2897–2903 | DOI | DOI

[35] M. Kaushik, “A review of innovative chemical drawing and spectra prediction computer software”, Mediterr. J. Chem, 3:1 (2014), 759–766 | DOI | DOI

[36] D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham, III, V. W.D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson et al, AMBER 2018, University of California, 2018

[37] J. P. Ryckaert, G. Ciccotti, H. J.C. Berendsen, “Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys, 23:3 (1977), 327–341 | DOI | DOI

[38] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method”, J. Chem. Phys, 103 (1995), 8577–8593 | DOI | DOI

[39] S. Genheden, U. Ryde, “The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinity”, Expert Opin. Drug Discov, 10:5 (2015), 449–461 | DOI | DOI

[40] J. Pu, X. He, W. Xu, C. Wang, Q. Lan, C. Hua, K. Wang, L. Lu, S. Jiang, “The analogs of furanyl methylidene rhodanine exhibit broad-spectrum inhibitory and inactivating activities against enveloped viruses, including SARS-CoV-2 and its variants”, Viruses, 14:3 (2022), 489 | DOI | DOI

[41] A. R. Katritzky, S. R. Tala, H. Lu, A. V. Vakulenko, Q. Y. Chen, J. Sivapackiam, K. Pandya, S. Jiang, A. K. Debnath, “Design, synthesis, and structure-activity relationship of a novel series of 2-aryl 5-(4-oxo-3-phenethyl-2 thioxothiazolidinylidenemethyl)furans as HIV-1 entry inhibitors”, J. Med. Chem, 52 (2009), 7631–7639 | DOI | DOI

[42] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings”, Adv. Drug Deliv. Rev, 46 (2001), 3–26 | DOI | DOI

[43] D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward, K. D. Kopple, “Molecular properties that influence the oral bioavailability of drug candidates”, J. Med. Chem, 45:12 (2002), 2615–2623 | DOI | DOI

[44] A. Daina, O. Michielin, V. Zoete, “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules”, Sci. Rep, 7 (2017), 42717 | DOI | DOI

[45] J. D. Durrant, J. A. McCammon, “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model, 29:6 (2011), 888–893 | DOI | DOI

[46] F. Song, G. Xu, M. D. Gaul, B. Zhao, T. Lu, R. Zhang, R. L. DesJarlais, K. DiLoreto, N. Huebert, B. Shook, D. Rentzeperis, R. Santulli, A. Eckardt, Demarest K. Design, “synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists”, Bioorg. Med. Chem. Lett, 29:15 (2019), 1974–1980 | DOI | DOI

[47] D. R. Jayne, P. A. Merkel, T. J. Schall, P. Bekker, “Avacopan for the treatment of ANCA associated vasculitis”, New Eng. J. Med, 384:7 (2021), 599–609 | DOI | DOI

[48] W. D. Soulsby, “Journal Club Review of “Avacopan for the Treatment of ANCA Associated Vasculitis””, ACR Open Rheumatol, 4:7 (2022), 558–561 | DOI | DOI

[49] R. Gupta, S. Mehan, P. Sethi, A. Prajapati, A. Alshammari, M. Alharbi, H. A. Al Mazroua, A. S. Narula, “Smo-Shh agonist Purmorphamine prevents neurobehavioral and neurochemical defects in 8-OH-DPAT-induced experimental model of obsessive compulsive disorder”, Brain Sci, 12:3 (2022), 342 | DOI | DOI

[50] B. R. Blank, J. Gut, P. J. Rosenthal, A. R. Renslo, “Artefenomel regioisomer RLA-3107 is a promising lead for the discovery of next-generation endoperoxide antimalarials”, ACS Med. Chem. Lett, 14:4 (2023), 493–498 | DOI | DOI

[51] A. Schmidt, D. B. Kimmel, C. Bai, A. Scafonas, S. Rutledge, R. L. Vogel, S. McElwee Witmer, F. Chen, P. V. Nantermet, V. Kasparcova et al, “Discovery of the selective androgen receptor modulator MK-0773 using a rational development strategy based on differential transcriptional requirements for androgenic anabolism versus reproductive physiology”, J. Biol. Chem, 285:22 (2010), 17054–17064 | DOI | DOI

[52] J. Tack, K. Schumacher, G. Tonini, S. Scartoni, A. Capriati, C. A. Maggi, “The neurokinin-2 receptor antagonist ibodutant improves overall symptoms, abdominal pain and stool pattern in female patients in a phase II study of diarrhoea-predominant IBS”, Gut, 66:8 (2016) | DOI | DOI