GENIS – methodological approach for in silico genotyping (validation on Sus scrofa sequencing results)
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 36-51

Voir la notice de l'article provenant de la source Math-Net.Ru

A universal methodological approach has been developed that allows solving the problem of differentiating closely related species using raw NGS sequencing data. The method is based on the use of single nucleotide polymorphisms (SNPs). This approach is universal; it can be used in the bioinformatic analysis of sequencing results, regardless of the biological species under study. The approach we developed is based on automating the process of searching for nucleotide sequences flanking the desired allele. The search is carriedout on the researcher's personal computer, does not require expensive equipment, the Python v.3.10 programming language and the Jupyter Notebook software development environment are free and publicly available. The methodological approach for in silico genotyping is implemented in the form of the GENIS software. Within the framework of this work, the program was tested on files with the results of genome sequencing of animals of the genus Sus. Revealed polymorphisms for the differentiation of pigs of the Duroc breed.
@article{MBB_2024_19_1_a3,
     author = {V. N. Kipen' and E. V. Snytkov},
     title = {GENIS {{\cyrv}{\CYRDJE}{\textquotedblleft}} methodological approach for in silico genotyping (validation on {Sus} scrofa sequencing results)},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {36--51},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a3/}
}
TY  - JOUR
AU  - V. N. Kipen'
AU  - E. V. Snytkov
TI  - GENIS – methodological approach for in silico genotyping (validation on Sus scrofa sequencing results)
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 36
EP  - 51
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a3/
LA  - ru
ID  - MBB_2024_19_1_a3
ER  - 
%0 Journal Article
%A V. N. Kipen'
%A E. V. Snytkov
%T GENIS – methodological approach for in silico genotyping (validation on Sus scrofa sequencing results)
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 36-51
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a3/
%G ru
%F MBB_2024_19_1_a3
V. N. Kipen'; E. V. Snytkov. GENIS – methodological approach for in silico genotyping (validation on Sus scrofa sequencing results). Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 36-51. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a3/

[1] A. O. Ryabtseva, I. S. Tsybovskii, S. A. Kotova, “Mikrosatellitnye markery v issledovanii polimorfizma dikogo kabana (Sus scrofa) i svini domashnei (Sus scrofa domestica), obitayuschikh na territorii Respubliki Belarus”, Molekulyarnaya i prikladnaya genetika, 25 (2018), 56–65

[2] K. Rebala, A. A. Rabtsava, S. A. Kotova, V. N. Kipen, N. V. Zhurina, A. I. Gandzha, I. S. Tsybovsky, “STR Profiling for Discrimination between Wild and Domestic Swine Specimens and between Main Breeds of Domestic Pigs Reared in Belarus”, PLoS One, 11:11 (2016), e0166563 | DOI | DOI

[3] A. Yu. Nosova, V. N. Kipen, A. I. Tsar, V. A. Lemesh, “Differentsiatsiya gibridnogo potomstva belogo (Hypophthalmichthys molitrix Val.) i pestrogo (H. nobilis Rich.) tolstolobikov na osnovanii polimorfizma mikrosatellitnykh lokusov”, Genetika, 56:3 (2020), 313–320 | DOI | DOI

[4] C. M. Conyers, T. R. Allnutt, H. J. Hird, J. Kaye, J. Chisholm, “Development of a microsatellite-based method for the differentiation of European wild boar (Sus scrofa scrofa) from domestic pig breeds (Sus scrofa domestica) in food”, Journal of Agricultural and Food Chemistry, 60:13 (2012), 3341–3347 | DOI | DOI

[5] R. Lorenzini, R. Fanelli, F. Tancredi, A. Siclari, L. Garofalo, “Matching STR and SNP genotyping to discriminate between wild boar, domestic pigs and their recent hybrids for forensic purposes”, Scientific Reports, 10 (2020), 3188 | DOI | DOI

[6] A. Koseniuk, G. Smolucha, A. Gurgul, T. Szmatola, M. Oczkowicz, A. Radko, “Differentiation of the domestic pig and wild boar using genotyping-by-sequencing”, Folia Biologica (Krakow), 71:1 (2023), 1–11 | DOI | DOI

[7] A. Koseniuk, G. Smolucha, M. Natonek-Wisniewska, A. Radko, D. Rubis, “Differentiating Pigs from Wild Boars Based on NR6A1 and MC1R Gene Polymorphisms”, Animals (Basel), 11:7 (2021), 2123 | DOI | DOI

[8] Unipro UGENE, (accessed 16.01.2024) https://ugene.net/

[9] Genome Analysis Toolkit, (accessed 16.01.2024) https://gatk.broadinstitute.org/hc/en-us

[10] ANNOVAR, (accessed 16.01.2024) https://annovar.openbioinformatics.org/en/latest/

[11] SnpEff SnpSift, (accessed 16.01.2024) http://pcingola.github.io/SnpEff/

[12] Whole genome association analysis toolset, (accessed 16.01.2024) https://zzz.bwh.harvard.edu/plink/

[13] SNPTEST, (accessed 16.01.2024) https://www.well.ox.ac.uk/g̃av/snptest/

[14] BioSample, (accessed 16.01.2024) https://www.ncbi.nlm.nih.gov/biosample

[15] BioProject, (accessed 16.01.2024) https://www.ncbi.nlm.nih.gov/bioproject

[16] Sequence Read Archive (SRA), (accessed 16.01.2024) https://www.ncbi.nlm.nih.gov/sra

[17] BGISEQ, (accessed 16.01.2024) https://www.bgi.com/global/overview/business-overview?i=3

[18] Illumina sequencing platforms, (accessed 16.01.2024) https://www.illumina.com/systems/sequencing-platforms.html

[19] Roche Sequencing Solutions, (accessed 16.01.2024) https://diagnostics.roche.com/global/en/about/about-roche-sequencing-solutions.html | MR | MR

[20] PACBIO SMRT, Sequencing systems, (accessed 16.01.2024) https://www.pacb.com/sequencing-systems/ | MR | MR

[21] OXFORD NANOPORE, (accessed 16.01.2024) https://nanoporetech.com/products

[22] B. H. Kipen, E. B. Snytkov, M. E. Mikhailova, R. I. Sheiko, “Differentsiatsiya porod domashnikh svinei c ispolzovaniem rasshirennogo bioinformaticheskogo analiza SNP”, Doklady Natsionalnoi akademii nauk Belarusi, 66:3 (2022), 301–309 | DOI | DOI

[23] Axiom$^{TM}$ Porcine Genotyping Array, (accessed 16.01.2024) https://www.thermofisher.com/order/catalog/product/550588

[24] Oligo Calc: Oligonucleotide Properties Calculator, (accessed 16.01.2024) http://biotools.nubic.northwestern.edu/OligoCalc.html

[25] V. N. Kipen, M. E. Mikhailova, E. V. Snytkov, E. L. Romanishko, E. V. Ivanova, R. I. Sheiko, “Bioinformaticheskii analiz genomov kommercheskikh porod domashnikh svinei dlya identifikatsii porodospetsifichnykh SNP”, Izvestiya Natsionalnoi akademii nauk Belarusi. Seriya agrarnykh nauk, 59:4 (2021), 464–476 | DOI | DOI

[26] V. N. Kipen, E. V. Ivanova, E. V. Snytkov, A. N. Verchuk, “Analiz polimorfizma gena gefestina (HEPH) na X-khromosome dlya ustanovleniya prinadlezhnosti biologicheskikh obraztsov k dikim ili domashnim predstavitelyam vida Sus scrofa”, Genetika, 56:9 (2020), 1054–1064 | DOI | DOI

[27] V. N. Kipen, A. O. Ryabtseva, S. A. Kotova, N. V. Zhurina, A. I. Gandzha, I. S. Tsybovskii, “Otsenka introgressii genov svini domashnei (Sus scrofa domesticus) v genofond dikogo kabana (Sus scrofa scrofa) na osnove issledovaniya polimorfizma genov MC1R i NR6A1”, Molekulyarnaya i prikladnaya genetika, 26 (2019), 83–95