Alternative splicing in pancreatic ductal adenocarcinoma leads to dysregulated immune system
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 15-35

Voir la notice de l'article provenant de la source Math-Net.Ru

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that poses a significant global health threat, marked by a substantial increase in prevalence and mortality rates. Accounting for 90% of pancreatic cancer cases, PDAC carries a dismal prognosis, and current therapeutic approaches, including immunotherapy, face challenges due to poor immunogenicity. This study aimed to discover differentially expressed immune genes shared between PDAC and normal samples from two datasets obtained from the NCBI GEO Dataset. The RNA-seq pipeline was employed for gene expression analysis, and enrichR facilitated functional enrichment analysis of biologically and statistically significant genes. Predictions of immune infiltration cells and corresponding genes, along with their immune responses, were made using the ScType database and the immunedeconv package, respectively. Verification of gene expression levels was conducted through GEPIA2, Expression Atlas, and literature review. Additionally, isoform-switching analysis of dysregulated genes aimed to uncover alternatively spliced pathogenic isoforms in PDAC. Notably, four immune genes (EPHA2 upregulated, GNG11, CRHBP, and FCER1A downregulated) were found to be common in both datasets and were highly implicated in PDAC. The dysregulated immune genes influenced molecular functions, including protein binding, transmembrane receptor protein tyrosine kinase activity, protein tyrosine kinase activity, and cadherin binding for upregulated genes. Downregulated genes were associated with GTPase activity and ribonucleoside triphosphate phosphatase activity. This study suggests these immune genes as potential prognostic biomarkers for effective PDAC treatment. However, further investigations are essential to unravel the functional perspectives of potential isoforms.
@article{MBB_2024_19_1_a2,
     author = {Fatimah A. Abdul Jabbar and Rawaa AlChalabi and Ahmed Yaseen AL-Tarboolee and Semaa A. Shaban and Ahmed AbdulJabbar Suleiman},
     title = {Alternative splicing in pancreatic ductal adenocarcinoma leads to dysregulated immune system},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {15--35},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a2/}
}
TY  - JOUR
AU  - Fatimah A. Abdul Jabbar
AU  - Rawaa AlChalabi
AU  - Ahmed Yaseen AL-Tarboolee
AU  - Semaa A. Shaban
AU  - Ahmed AbdulJabbar Suleiman
TI  - Alternative splicing in pancreatic ductal adenocarcinoma leads to dysregulated immune system
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 15
EP  - 35
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a2/
LA  - en
ID  - MBB_2024_19_1_a2
ER  - 
%0 Journal Article
%A Fatimah A. Abdul Jabbar
%A Rawaa AlChalabi
%A Ahmed Yaseen AL-Tarboolee
%A Semaa A. Shaban
%A Ahmed AbdulJabbar Suleiman
%T Alternative splicing in pancreatic ductal adenocarcinoma leads to dysregulated immune system
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 15-35
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a2/
%G en
%F MBB_2024_19_1_a2
Fatimah A. Abdul Jabbar; Rawaa AlChalabi; Ahmed Yaseen AL-Tarboolee; Semaa A. Shaban; Ahmed AbdulJabbar Suleiman. Alternative splicing in pancreatic ductal adenocarcinoma leads to dysregulated immune system. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 15-35. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a2/

[1] L. Zhang, S. Sanagapalli, A. Stoita, “Challenges in diagnosis of pancreatic cancer”, World J. Gastroenterol, 24:19 (2018), 2047–2060 | DOI | DOI

[2] P. Rawla, T. Sunkara, V. Gaduputi, “Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors”, World J. Oncol, 10:1 (2019), 10–27 | DOI | DOI

[3] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries”, CA Cancer J. Clin, 71:3 (2021), 209–249 | DOI | DOI

[4] N. Fukushima, G. Zamboni, “Histologic Classification and Staging of Cystic Neoplasms”, The Pancreas: An Integrated Textbook of Basic Science, Medicine, and Surgery, Third Edition, John Wiley Sons, Ltd, 2018, 573–579 | DOI | DOI

[5] M. Diab, P. A. Philip, “Uncommon Cancers of the Pancreas”, Textbook of Uncommon Cancer, John Wiley Sons, Ltd, 2017, 429–443 | DOI | DOI

[6] P. Rawla, T. Sunkara, V. Gaduputi, “Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors”, World J. Oncol, 10:1 (2019), 10–27 | DOI | DOI

[7] E. A. Collisson, P. Bailey, D. K. Chang, A. V. Biankin, “Molecular subtypes of pancreatic cancer”, Nat. Rev. Gastroenterol. Hepatol, 16:4 (2019), 207–220 | DOI | DOI

[8] H. L. Gao, W. Q. Wang, X. J. Yu, L. Liu, “Molecular drivers and cells of origin in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine carcinoma”, Exp. Hematol. Oncol, 22:9 (2020), 28 | DOI | Zbl | DOI | Zbl

[9] M. E. Mostafa, I. Erbarut-Seven, B. Pehlivanoglu, V. Adsay, “Pathologic classification of "pancreatic cancers": current concepts and challenges”, Chin. Clin. Oncol, 6:6 (2018), 59–59 | DOI | MR | DOI | MR

[10] L. E. Oldfield, A. A. Connor, S. Gallinger, “Molecular Events in the Natural History of Pancreatic Cancer”, Trends Cancer., 3:5 (2017), 336–346 | DOI | DOI

[11] A. Grimont, S. D. Leach, R. Chandwani, “Uncertain Beginnings: Acinar and Ductal Cell Plasticity in the Development of Pancreatic Cancer”, Cell. Mol. Gastroenterol. Hepatol., 13:2 (2022), 369–382 | DOI | DOI

[12] A. B. Deshwar, E. Sugar, D. Torto, A. D. Jesus-Acosta, M. J. Weiss, Wolfgang C.L, D. Le, J. He, R. Burkhart, L. Zheng et al, “Diagnostic intervals and pancreatic ductal adenocarcinoma (PDAC) resectability: a single-center retrospective analysis”, Ann. Pancreat. Cancer, 1:2 (2018)

[13] G. T. Moffat, A. S. Epstein, E. M. O'Reilly, “Pancreatic cancer A disease in need: Optimizing and integrating supportive care”, Cancer, 125:22 (2019), 3927–3935 | DOI | DOI

[14] I. H. Sahin, G. Askan, Z. I. Hu, E. M. O'Reilly, Immunotherapy in pancreatic ductal adenocarcinoma: an emerging entity?, Ann. Oncol, 28:12 (2017), 2950–61 | DOI | DOI

[15] E. Karamitopoulou, “Tumour microenvironment of pancreatic cancer: immune landscape is dictated by molecular and histopathological features”, Br. J. Cancer, 121:1 (2019), 5–14 | DOI | DOI

[16] E. Riquelme, A. Maitra, F. McAllister, “Immunotherapy for Pancreatic Cancer: More than Just a Gut Feeling”, Cancer Discov, 8:4 (2018), 386–388 | DOI | DOI

[17] J. Lu, S. Wei, J. Lou, S. Yin, L. Zhou, W. Zhang, S. Zheng, “Systematic Analysis of Alternative Splicing Landscape in Pancreatic Adenocarcinoma Reveals Regulatory Network Associated with Tumorigenesis and Immune Response”, Med. Sci. Monit, 26 (2020) | DOI | DOI

[18] Y. Zhang, A. Velez-Delgado, E. Mathew, D. Li, F. M. Mendez, K. Flannagan, A. D. Rhim, D. M. Simeone, G. L. Beatty, M. P. di Magliano, “Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer”, Gut, 66:1 (2017), 124–136 | DOI | DOI

[19] B. Chen, T. Deng, L. Deng, H. Yu, B. He, K. Chen, C. Zheng, D. Wang, Y. Wang, G. Chen, “Identification of tumour immune microenvironment-related alternative splicing events for the prognostication of pancreatic adenocarcinoma”, BMC Cancer, 21:1 (2021), 1211 | DOI | DOI

[20] D. M. Marzese, A. O. Manughian-Peter, J. I.J. Orozco, D. S.B. Hoon, “Alternative splicing and cancer metastasis: prognostic and therapeutic applications”, Clin. Exp. Metastasis, 35:5 (2018), 393–402 | DOI | DOI

[21] R. R. Kawalerski, S. D. Leach, L. F. Escobar-Hoyos, “Pancreatic cancer driver mutations are targetable through distant alternative RNA splicing dependencies”, Oncotarget, 12:6 (2021), 525–533 | DOI | DOI

[22] S. Venkat, A. A. Alahmari, M. E. Feigin, “Drivers of Gene Expression Dysregulation in Pancreatic Cancer”, Trends Cancer, 7:7 (2021), 594–605 | DOI | DOI

[23] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko et al, “NCBI GEO: archive for functional genomics data sets update”, Nucleic Acids Res., 41:D1 (2013), D991–D995 | DOI | DOI

[24] T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista, I. F. Kim, A. Soboleva, M. Tomashevsky, K. A. Marshall et al, “NCBI GEO: archive for high throughput functional genomic data”, Nucleic Acids Res., 37, suppl 1 (2009), D885-D890 | DOI | DOI

[25] J. Brown, M. Pirrung, L. A. McCue, “FQC Dashboard: integrates FastQC results into a web based, interactive, and extensible FASTQ quality control tool”, Bioinformatics, 33:19 (2017), 3137–3139 | DOI | DOI

[26] S. Chen, Y. Zhou, Y. Chen, J. Gu, “fastp: an ultra-fast all-in-one FASTQ preprocessor”, Bioinformatics, 34:17 (2018), i884-i890 | DOI | DOI

[27] A. Tarasov, A. J. Vilella, E. Cuppen, I. J. Nijman, P. Prins, “Sambamba: fast processing of NGS alignment formats”, Bioinformatics, 31:12 (2015), 2032–2034 | DOI | DOI

[28] M. Pertea, G. M. Pertea, C. M. Antonescu, T. C. Chang, J. T. Mendell, S. L. Salzberg, “StringTie enables improved reconstruction of a transcriptome from RNA-seq reads”, Nat. Biotechnol, 33:3 (2015), 290–295 | DOI | DOI

[29] I. Papatheodorou, P. Moreno, J. Manning, A. M.P. Fuentes, N. George, S. Fexova, N. A. Fonseca, A. Fullgrabe, M. Green, N. Huang et al, “Expression Atlas update: from tissues to single cells”, Nucleic Acids Res., 48:D1 (2020), D77–83

[30] Z. Tang, B. Kang, C. Li, T. Chen, Z. Zhang, “GEPIA2: an enhanced web server for large scale expression profiling and interactive analysis”, Nucleic Acids Res., 47:W1 (2019), W556–60 | DOI | DOI

[31] Z. Xie, A. Bailey, M. V. Kuleshov, D. J.B. Clarke, J. E. Evangelista, S. L. Jenkins, A. Lachmann, M. L. Wojciechowicz, E. Kropiwnicki, K. M. Jagodnik, M. Jeon, A. Ma'ayan, “Gene Set Knowledge Discovery with Enrichr”, Curr. Protoc., 1:3 (2021), e90 | DOI | MR | DOI | MR

[32] A. Ianevski, A. K. Giri, T. Aittokallio, “Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data”, Nat. Commun, 13:1 (2022), 1246 | DOI | DOI

[33] A. Garcia-Moreno, R. Lopez-Dominguez, J. A. Villatoro-Garcia, A. Ramirez-Mena, E. Aparicio-Puerta, M. Hackenberg, A. Pascual-Montano, P. Carmona-Saez, “Functional Enrichment Analysis of Regulatory Elements”, Biomedicines, 10:3 (2022), 590 | DOI | DOI

[34] L. Chen, K. Chen, Y. Hong, L. Xing, J. Zhang, K. Zhang, Z. Zhang, “The landscape of isoform switches in sepsis: a multicenter cohort study”, Sci. Rep, 12:1 (2022), 10276 | DOI | DOI

[35] F. Finotello, C. Mayer, C. Plattner, G. Laschober, D. Rieder, H. Hackl, A. Krogsdam, Z. Loncova, W. Posch, D. Wilflingseder et al, “Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data”, bioRxiv, 2018 | DOI | DOI

[36] S. Huang, Z. Song, T. Zhang, X. He, K. Huang, Q. Zhang, J. Shen, J. Pan, “Identification of Immune Cell Infiltration and Immune-Related Genes in the Tumor Microenvironment of Glioblastomas”, Front. Immunol, 11 (2020) | DOI | DOI

[37] G. Sturm, F. Finotello, M. List, “Immunedeconv: An R Package for Unified Access to Computational Methods for Estimating Immune Cell Fractions from Bulk RNA Sequencing Data”, Bioinformatics for Cancer Immunotherapy, Methods in Molecular Biology, 2120, ed. Boegel S., Springer US, New York, NY, 2020, 223–332 | DOI | DOI

[38] E. Becht, N. A. Giraldo, L. Lacroix, B. Buttard, N. Elarouci, F. Petitprez, J. Selves, P. Laurent-Puig, C. Sautes-Fridman, W. H. Fridman, A. de Reynies, “Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression”, Genome Biol, 17:1 (2016), 218 | DOI | DOI

[39] Le Large T. Y.S, G. Mantini, L. L. Meijer, T. V. Pham, N. Funel, N. C.T. van Grieken, B. Kok, J. Knol, H. W.M. van Laarhoven, S. R. Piersma et al, “Microdissected pancreatic cancer proteomes reveal tumor heterogeneity and therapeutic targets”, JCI Insight, 5:15 (2020), e138290 | DOI | DOI

[40] W. Hill, Zaragkoulias A, . Salvador-Barbero B., G. J. Parfitt, M. Alatsatianos, A. Padilha, S. Porazinski, T. E. Woolley, J. P. Morton, O. J. Sansom, C. Hogan, “EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas”, Curr. Biol., 31:12 (2021), 2550–2560e5 | DOI | DOI

[41] M. Iiizumi, M. Hosokawa, A. Takehara, S. Chung, T. Nakamura, T. Katagiri, H. Eguchi, H. Ohigashi, O. Ishikawa, Y. Nakamura, H. Nakagawa, “EphA4 receptor, overexpressed in pancreatic ductal adenocarcinoma, promotes cancer cell growth”, Cancer Sci, 97:11 (2006), 1211–1216 | DOI | DOI

[42] H. Haouas, S. Haouas, G. Uzan, A. Hafsia, “Identification of new markers discriminating between myeloid and lymphoid acute leukemia”, Hematology, 15:4 (2010), 193–203 | DOI | DOI

[43] J. Iovanna, N. Dusetti, “Speeding towards individualized treatment for pancreatic cancer by taking an alternative road”, Cancer Lett, 410 (2017), 63–67 | DOI | DOI

[44] Luo Y., “The characteristic of stem-related genes with pancreatic carcinoma cell after irradiation”, Heliyon, 9:6 (2023), e17074 | DOI | DOI

[45] H. Yang, L. Zhao, Y. Zhang, F. F. Li, “A comprehensive analysis of immune infiltration in the tumor microenvironment of osteosarcoma”, Cancer Med, 10:16 (2021), 5696–5711 | DOI | DOI

[46] H. Zalpoor, F. Aziziyan, M. Liaghat, M. Bakhtiyari, A. Akbari, M. Nabi-Afjadi, R. Forghaniesfidvajani, N. Rezaei, “The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors”, Cell Commun. Signal, 20:1 (2022), 186 | DOI | DOI

[47] M. Sommariva, N. Gagliano, “E-Cadherin in Pancreatic Ductal Adenocarcinoma: A Multifaceted Actor during EMT”, Cells, 9:4 (2020), 1040 | DOI | DOI

[48] H. Li, M. Wu, X. Zhao, “Role of chemokine systems in cancer and inflammatory diseases”, MedComm., 3:2 (2022), e147 | DOI | MR | DOI | MR

[49] R. Tan, M. Nie, W. Long, “The role of B cells in cancer development”, Front. Oncol, 12 (2022), 958756 | DOI | DOI

[50] Y. Dong, Z. Wan, X. Gao, G. Yang, L. Liu, “Reprogramming Immune Cells for Enhanced Cancer Immunotherapy: Targets and Strategies”, Front. Immunol, 12 (2021), 609762 | DOI | DOI

[51] L. Nagl, L. Horvath, A. Pircher, D. Wolf, “Tumor Endothelial Cells (TECs) as Potential Immune Directors of the Tumor Microenvironment New Findings and Future Perspectives”, Front. Cell Dev. Biol, 8 (2020), 766 | DOI | DOI

[52] N. Luo, “Editorial: Tumor microenvironment in cancer hallmarks and therapeutics”, Front. Mol. Biosci, 9 (2022), 1019830 | DOI | DOI

[53] A. M. van der Leun, D. S. Thommen, T. N. Schumacher, “CD8+ T cell states in human cancer: insights from single-cell analysis”, Nat. Rev. Cancer, 20 (2020), 218–232 | DOI | MR | DOI | MR

[54] C. Li, P. Jiang, S. Wei, X. Xu, J. Wang, “Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects”, Mol. Cancer, 19:1 (2020), 116 | DOI | DOI

[55] T. Karakulak, H. Moch, C. von Mering, A. Kahraman, “Probing Isoform Switching Events in Various Cancer Types: Lessons From Pan-Cancer Studies”, Front. Mol. Biosci, 8 (2021), 726902 | DOI | DOI

[56] Y. Zhang, K. M. Weh, C. L. Howard, J. J. Riethoven, J. L. Clarke, K. H. Lagisetty, J. Lin, R. M. Reddy, A. C. Chang, D. G. Beer et al, “Characterizing isoform switching events in esophageal adenocarcinoma”, Mol. Ther Nucleic Acids, 29 (2022), 749–768 | DOI | DOI

[57] K. Vitting-Seerup, A. Sandelin, “The Landscape of Isoform Switches in Human Cancers”, Mol. Cancer Res, 15:9 (2017), 1206–1220 | DOI | DOI

[58] J. Chen, W. A. Weiss, “Alternative splicing in cancer: implications for biology and therapy”, Oncogene, 34:1 (2015), 1–14 | DOI | DOI

[59] D. P. Potaczek, A. Przytulska-Szczerbik, Bazan-Socha S., Nastalek M., Wojas-Pelc A., Okumura K., Nishiyama C., Jurczyszyn A., Undas A., Wypasek E., “Interaction between functional polymorphisms in FCER1A and TLR2 and the severity of atopic dermatitis”, Hum Immunol., 81:12 (2020), 709–713 | DOI | DOI

[60] H. Wu, W. Tian, X. Tai, X. Li, Z. Li, J. Shui, J. Yu, Z. Wang, X. Zhu, “Identification and functional analysis of novel oncogene DDX60L in pancreatic ductal adenocarcinoma”, BMC Genomics, 22:1 (2021), 833 | DOI | DOI

[61] J. Lin, Y. J. Wu, X. Liang, M. Ji, H. M. Ying, X. Y. Wang, X. Sun, C. H. Shao, L. X. Zhan, Y. Zhang, “Network-based integration of mRNA and miRNA profiles reveals new target genes involved in pancreatic cancer”, Mol. Carcinog, 58:2 (2019), 206–218 | DOI | DOI