Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_1_a13, author = {G. A. Vinogradov and V. D. Lakhno}, title = {On the thermalization of one-dimensional lattices. {I.~Microcanonical} ensemble}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {248--260}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a13/} }
TY - JOUR AU - G. A. Vinogradov AU - V. D. Lakhno TI - On the thermalization of one-dimensional lattices. I.~Microcanonical ensemble JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 248 EP - 260 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a13/ LA - ru ID - MBB_2024_19_1_a13 ER -
%0 Journal Article %A G. A. Vinogradov %A V. D. Lakhno %T On the thermalization of one-dimensional lattices. I.~Microcanonical ensemble %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 248-260 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a13/ %G ru %F MBB_2024_19_1_a13
G. A. Vinogradov; V. D. Lakhno. On the thermalization of one-dimensional lattices. I.~Microcanonical ensemble. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 248-260. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a13/
[1] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “Theoretical and experimental investigation of DNA open state”, Mathematical Biology and Bioinformatics, 13:S (2018) | DOI | DOI
[2] I. V. Likhachev, A. S. Shigaev, V. D. Lakhno, “On the thermodynamics of DNA double strand in the Peyrard-Bishop-Dauxois model”, Phys. Lett. A, 510 (2024), 129547 | DOI | MR | DOI | MR
[3] A. Ya. Khinchin, Matematicheskie osnovaniya statisticheskoi mekhaniki, Nauka, M., 2003 | MR | MR
[4] R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer Series in Solid-State Science, 31, Springer, NewYork, 1985 | DOI | MR | DOI | MR
[5] M. Toda, Theory of Nonlinear Lattices, Springer, New York, 1989 | MR | Zbl | MR | Zbl
[6] V. N. Likhachev, T. Yu. Astakhova, G. A. Vinogradov, “Thermodynamics and ergodicity of finite one-dimensional Toda and Morse lattices”, Phys. Lett. A, 354 (2006), 264–270 | DOI | MR | Zbl | DOI | MR | Zbl
[7] E. Fermi, “Dimostrazione che in generale un sistema meccanico normale e quasi ergodico”, Il Nuovo Cimento, 25 (1923), 267–269 (In Italian) | DOI | DOI
[8] E. Fermi, J. Pasta, S. Ulam, Los Alamos Report LA No 1940, 1955 | Zbl | Zbl
[9] The Collected Papers of Enrico Fermi, v. II, Chicago University Press, Chicago, 1965 | MR | MR
[10] D. K. Campbell, P. Rosenau, G. M. Zaslavsky, “Introduction: The Fermi-Pasta-Ulam problem-The first fifty years”, Chaos, 15:1 (2005) | DOI | Zbl | DOI | Zbl
[11] Gallavotti G. (ed.), The Fermi-Pasta-Ulam Problem: A Status Report, Lecture Notes in Physics, 728, Springer, 2008, 308 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[12] T. Dauxois, “Fermi, Pasta, Ulam, a mysterious lady”, Physics Today, 61:1 (2008), 55–57 | DOI | DOI
[13] V. E. Zakharov, E. I. Schulman, “Integrability of nonlinear systems and perturbation theory”, What is integrability?, ed. Zakharov V.E., Springer, Berlin, 1991, 185–250 | DOI | MR | Zbl | DOI | MR | Zbl
[14] N. J. Zabusky, M. D. Kruskal, “Interaction of “solitons” in a collisionless plasma and the reccurence of initial states”, Phys. Rev. Lett, 15:6 (1965), 240–243 | DOI | Zbl | DOI | Zbl
[15] S. D. Pace, K. A. Reiss, D. K. Campbell, “The-Fermi-Pasta-Ulam-Tsingou recurrence problem”, Chaos, 29:11 (2019), 113107 | DOI | MR | Zbl | DOI | MR | Zbl
[16] D. Pierangeli, M. Flammini, L. Zhang, Marcucci G. Agranat, A. J., P. G. Grinevich, P. M. Santini, C. Conti, E. DelRe, “Observation of Fermi-Pasta-Ulam-Tsingou Recurrence and Its Exact Dynamics”, Phys. Rev. X, 8 (2018), 041017 | DOI | DOI
[17] A. Hofstrand, “Near-integrable dynamics of the Fermi-Pasta-Ulam-Tsingou problem”, Phys. Rev. E, 109 (2024), 034204 | DOI | MR | DOI | MR
[18] F. Borgonovi, F. M. Izrailev, “Classical statistical mechanics of a few-body interacting spin model”, Phys. Rev. E, 62 (2000), 6475 | DOI | MR | DOI | MR
[19] F. M. Izrailev, B. V. Chirikov, Dokl. AN SSSR, 166 (1966), 57 | Zbl | Zbl
[20] B. V. Chirikov, Phys. Rep, 52 (1979), 263 | DOI | MR | DOI | MR
[21] V. N. Likhachev, T. Yu. Astakhova, G. A. Vinogradov, “The Dynamics of a One-Dimensional Disordered Morse Lattice: Cooling Caused by Adiabatic Stretching”, Russ. J. Phys. Chem. B, 3:1 (2009), 140–150 | DOI | MR | DOI | MR
[22] M. Onorato, Y. V. Lvov, “Double Scaling in the Relaxation Time in the-Fermi-Pasta-Ulam-Tsingou Model”, Phys. Rev. Lett, 120 (2018), 144301 | DOI | DOI
[23] M. Onorato, L. Vozella, D. Proment, Y. V. Lvov, “Route to thermalization in the-Fermi-Pasta-Ulam system”, PNAS, 112:14 (2015), 4208–4213 | DOI | DOI
[24] G. Benettin, H. Christodoulidi, A. Ponno, “The Fermi-Pasta-Ulam problem and its underlying integrable dynamics”, J. Stat. Phys, 152:2 (2013), 195–212 | DOI | MR | DOI | MR
[25] V. V. Kozlov, Teplovoe ravnovesie po Gibbsu i Puankare, Institut kompyuternykh issledovanii, Moskva-Izhevsk, 2002 | MR | MR
[26] V. E. Zakharov, Y. S. L'vov, G. Falkovich, Kolmogorov spectra of turbulence I: Wave turbulence, Springer Science Business Media, 2012 | MR | MR
[27] Galtier S., Physics of Wave Turbulence, Cambridge University Press, 2022
[28] M. Onorato, Y. V. Lvov, G. Dematteis, S. Chibbaro, “Wave Turbulence and thermalization in one-dimensional chains”, Phys. Reports, 1040 (2023), 1–36 | DOI | MR | Zbl | DOI | MR | Zbl
[29] Y. Liu, D. He, “Analytical approach to Lyapunov time: Universal scaling and thermalization”, Phys. Rev. E, 103 (2021) | DOI | MR | DOI | MR
[30] M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics, Springer, NewYork, 2008 | MR | MR
[31] N. S. Krylov, Works on the Foundations of Statistical Physics, Princeton University Press, Princeton, 1979 | MR | MR
[32] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Nauk. dumka, Kiev, 1984 | MR | MR
[33] P. S. Lomdahl, W. C. Kerr, Phys. Rev. Lett., 55 (1985), 1235 | DOI | DOI
[34] X. D. Wang, D. W. Brown, K. Lindenberg, Phys. Rev. Lett, 62 (1989), 1796 | DOI | DOI
[35] S. Flach, C. R. Willis, “Discrete breathers”, Phys. Reports, 295 (1998), 181–264 | DOI | MR | DOI | MR
[36] S. Aubry, “Discrete Breathers: Localization and transfer of energy in discrete Hamiltonian nonlinear systems”, Physica D, 216 (2006), 1–30 | DOI | MR | Zbl | DOI | MR | Zbl
[37] S. Flach, A. V. Gorbach, “Discrete breathers- Advances in theory and applications”, Phys. Reports, 467 (2008), 1–116 | DOI | DOI
[38] R. S. MacKay, S. Aubry, “Discrete breathers in anharmonic models with acoustic phonons”, Nonlinearity, 7 (1994), 1623–1643 | DOI | MR | Zbl | DOI | MR | Zbl
[39] A. S. Davydov, Solitony v bioenergetike, Nauk. dumka, Kiev, 1986 | MR | MR
[40] G. Kopidakis, S. Aubry, G. P. Tsironis, “Targeted Energy Transfer through Discrete Breathers in Nonlinear Systems”, Phys. Rev. Lett, 87:16 (2001), 165501 | DOI | MR | DOI | MR
[41] T. Yu. Astakhova, V. N. Likhachev, G. A. Vinogradov, Heat conductance in nonlinear lattices at small temperature gradients, arXiv: 1006.1779
[42] S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Phys. Reports, 377 (2003), 1–80 | DOI | MR | DOI | MR