Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_1_a12, author = {L. V. Yakushevich and L. A. Krasnobaeva}, title = {Trajectories of solitons movement in the potential field of {pPF1} plasmid with non-zero initial velocity}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {232--247}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a12/} }
TY - JOUR AU - L. V. Yakushevich AU - L. A. Krasnobaeva TI - Trajectories of solitons movement in the potential field of pPF1 plasmid with non-zero initial velocity JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 232 EP - 247 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a12/ LA - ru ID - MBB_2024_19_1_a12 ER -
%0 Journal Article %A L. V. Yakushevich %A L. A. Krasnobaeva %T Trajectories of solitons movement in the potential field of pPF1 plasmid with non-zero initial velocity %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 232-247 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a12/ %G ru %F MBB_2024_19_1_a12
L. V. Yakushevich; L. A. Krasnobaeva. Trajectories of solitons movement in the potential field of pPF1 plasmid with non-zero initial velocity. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 232-247. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a12/
[1] S. Zdravkovic, M. V. Sataric, M. Daniel, “Kink solitons in DNA”, International Journal of Modern Physics B, 27:31 (2013), 1350184 | DOI | Zbl | DOI | Zbl
[2] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “Teoreticheskie i eksperimentalnye issledovaniya otkrytykh sostoyanii DNK”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 553–664 | DOI | MR | DOI | MR
[3] D. Clark, N. Pazdernik, Biotechnology, 2nd edn., Academic Cell, Amsterdam, 2015
[4] Y. He, C. Yan, J. Inouye C. Fang, R. Tjian, I. Ivanov, E. Nogalese, “Near-atomic resolution visualization of human transcription promoter opening”, Nature, 533 (2016), 359–365 | DOI | DOI
[5] L. J. Bailey, A. J. Doherty, “Mitochondrial DNA replication: a PrimPol perspective”, Biochem. Soc. Trans, 45 (2017), 513–529 | DOI | DOI
[6] F. Bleichert, M. R. Botchan, J. M. Berger, “Mechanisms for initiating cellular DNA replication”, Science, 355 (2017), 215–222 | DOI | DOI
[7] F. Sicard, N. Destainville, M. Manghi, “DNA denaturation bubbles:free-energy landscape and nucleation/closure rates”, J. Chem. Phys, 142 (2015), 903–910 | DOI | DOI
[8] C. Shi, F. Shang, M. Zhou, P. Zhang, Y. Wang, C. Ma, “Triggered isothermal PCR by denaturation bubble-mediated strand exchange amplification”, Chemical Communications, 52 (2016), 11551–11554 | DOI | DOI
[9] A. R. Singh, R. Granek, “Manipulation of double-stranded DNA melting by force”, Phys. Rev. E, 96 (2017), 032417–032422 | DOI | DOI
[10] D. Dwiputra, W. Hidayat, F. P. Zen, “Nonlinear dynamics of DNA bubble induced by site specific DNA-protein interaction”, J. Phys. Conf. Ser, 856 (2017), 012005–012009 | DOI | DOI
[11] S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A. Krumhansl, A. Litwin, “Nature of the open state in DNA structure”, Proc. Natl. Acad. Sci, 77 (1980), 7222–7226 | DOI | DOI
[12] A. Barone, F. Esposito, C. J. Magee, A. C. Scott, “Theory and Applications of the Sine Gordon Equation”, La Rivista del Nuovo Cimento, 1 (1971), 227–267 | DOI | DOI
[13] S. Yomosa, “Soliton excitations in deoxyribonucleic acid (DNA) double helices”, Phys. Rev. A, 27 (1983), 2120–2125 | DOI | MR | DOI | MR
[14] J. A. Krumhansl, D. M. Alexander, “Nonlinear dynamics and conformational excitations in biomolecular materials”, Structure and dynamics: nucleic acids and proteins, eds. Clementi E., Sarma R.H., Adenine Press, New York, 1983, 61–80
[15] S. Homma, S. Takeno, “A coupled base-rotator model for structure and dynamics of DNA”, Progress of Theoretical Physics, 72 (1984), 679–693 | DOI | MR | Zbl | DOI | MR | Zbl
[16] V. K. Fedyanin, I. Gochev, V. Lisy, “Nonlinear dynamics of bases in continual model of DNA double helices”, Stud. Biophys, 116 (1986), 59–64
[17] L. V. Yakushevich, Nonlinear physics of DNA, Wiley, Weinheim, 2004
[18] G. Gaeta, L. Venier, “Solitary waves in twistopening models of DNA dynamics”, Physical Review E, 78 (2008), 011901 | DOI | MR | DOI | MR
[19] M. Cadoni, R. De Leo, S. Demelio, “Soliton propagation in homogeneous and inhomogeneous models for DNA torsion dynamics”, Journal of Nonlinear Mathematical Physics, 18 (2011), 287–319 | DOI | MR | Zbl | DOI | MR | Zbl
[20] D. Chevizovich, D. Michieletto, A. Mvogo, F. Zakiryanov, S. Zdravkovic, “A review on nonlinear DNA physics”, Royal Society Open Science, 7 (2020), 200774 | DOI | DOI
[21] S. Zdravkovic, D. Chevizovich, Nonlinear Dynamics of Nanobiophysics, Springer Nature, Singapore, 2022, 384 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[22] L. V. Yakushevich, L. A. Krasnobaeva, “Vliyanie dissipatsii i vneshnego polya na dinamiku lokalnykh konformatsionnykh vozmuschenii v DNK”, Biofizika, 52:2 (2007), 237–243
[23] A. A. Grinevich, A. A. Ryasik, L. V. Yakushevich, “Trajectories of DNA bubbles”, Chaos, Solitons Fractals, 75 (2015), 62–75 | DOI | MR | Zbl | DOI | MR | Zbl
[24] D. W. McLaughlin, A. C. Scott, “Perturbation analysis of fluxon dynamics”, Physical Review A, 18 (1978), 1652–1671 | DOI | DOI
[25] L. V. Yakushevich, L. A. Krasnobaeva, “Ideas and methods of nonlinear mathematics and theoretical physics in DNA science: the McLaughlin-Scott equation and its application to study the DNA open state dynamics”, Biophysical Reviews, 13 (2021), 315–338 | DOI | DOI
[26] L. A. Krasnobaeva, L. V. Yakushevich, “DNA kinks behavior in the potential pit-trap”, AIMS Biophysics, 9:2 (2022), 130–146 | DOI | DOI
[27] L. V. Yakushevich, L. A. Krasnobaeva, “Plasmid pBR322 and nonlinear conformational distortions (kinks)”, Mathematical Biology and Bioinformatics, 14:1 (2019), 327–339 | DOI | DOI
[28] I. S. Masulis, Z. Sh. Babaeva, S. V. Chernyshov, O. N. Ozoline, “Visualizing the activity of Escherichia coli divergent promoters and probing their dependence on superhelical density using dual-colour fluorescent reporter vector”, Scientific Reports, 5 (2015), 11449 | DOI | DOI
[29] The pET-28b sequence and map, SnapGene (accessed 27.06.2024) https://www.snapgene.com/plasmids/pet_and_duet_vectors_(novagen)/pET-28b(
[30] The mCherry sequence and map, SnapGene (accessed 27.06.2024) https://www.snapgene.com/resources/plasmid-files/?set=fluorescent_protein_genes_and_plasmids&plasmid=mCherry
[31] Grinevich A.A., Masulis I.S., Yakushevich L.V., “Matematicheskoe modelirovanie povedeniya transkriptsionnogo puzyrya v plazmide pPF1 i ee modifikatsiyakh. Svyaz mezhdu energeticheskim profilem plazmidy i napravleniem transkriptsii”, Biofizika, 66 (2021), 248-258 | DOI | DOI
[32] Yakushevich L.V., “On the mechanical analogue of DNA”, Journal of Biological Physics, 43 (2017), 113-125 | DOI | DOI
[33] Yakushevich L.V., Savin A.V., Manevitch L.I., “Nonlinear dynamics of topological solitons in DNA”, Physical Review E, 66 (2002), 016614 | DOI | MR | DOI | MR