Computer simulation of charge transfer in a DNA molecule within a simple model of an open quantum system
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 212-231

Voir la notice de l'article provenant de la source Math-Net.Ru

The quantum-statistical model proposed earlier by Skourtis and Nitzan to describe a charge (hole) propagation in a fragment of artificial DNA molecule has been generalized and further investigated. A numerical simulation of a charge transport was carried out taking into account two different dissipative processes, including the capture of the charged carrier by the environment and the decoherence of its quantum wave properties due to the influence of stochastic fields of the environment. The interaction of the carrier with the environment is regulated by a small set of phenomenological parameters whose values vary in the process of simulation. Within this model, the propagation of a hole carrier in DNA is described by solving the quantum Franke–Kossakovski–Lindblad–Glauber–Sudarshan equation (hereinafter referred to as the Lindblad equation) for the carrier density matrix using the Lindblad MPO Solver program. Results of numerical analysis of the model are in a good agreement with experimental observations and demonstrate two different types of the charged carrier motion, presumably tunneling and incoherent hopping. The model is put in more general context and non-unitary dynamics of the hole carrier is treated within the framework of a theory of continuous quantum measurements by the environment in an open quantum system. The main concepts of the theory of decoherence and superselection for open quantum systems and the prospects for their application for further study of various mechanisms of motion of a charged carrier in DNA are briefly discussed.
@article{MBB_2024_19_1_a11,
     author = {A. V. Syurakshin and V. D. Lakhno and V. Yu. Yushankhai},
     title = {Computer simulation of charge transfer in a {DNA} molecule within a simple model of an open quantum system},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {212--231},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a11/}
}
TY  - JOUR
AU  - A. V. Syurakshin
AU  - V. D. Lakhno
AU  - V. Yu. Yushankhai
TI  - Computer simulation of charge transfer in a DNA molecule within a simple model of an open quantum system
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 212
EP  - 231
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a11/
LA  - ru
ID  - MBB_2024_19_1_a11
ER  - 
%0 Journal Article
%A A. V. Syurakshin
%A V. D. Lakhno
%A V. Yu. Yushankhai
%T Computer simulation of charge transfer in a DNA molecule within a simple model of an open quantum system
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 212-231
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a11/
%G ru
%F MBB_2024_19_1_a11
A. V. Syurakshin; V. D. Lakhno; V. Yu. Yushankhai. Computer simulation of charge transfer in a DNA molecule within a simple model of an open quantum system. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 212-231. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a11/

[1] J. D. Watson, F. H.C. Crick, “A structure for deoxyribose nucleic acid”, Nature, 171 (1953), 737–738 | DOI | DOI

[2] D. D. Eley, D. I. Spivey, “Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state”, Trans. Faraday Soc, 58 (1962), 411–415 | DOI | DOI

[3] J. Dutreix, A. Wambersie, M. Tubiana, Introduction to radiobiology, CRC Press, London, 1990 | DOI | DOI

[4] K. Frenkel, “Carcinogen-mediated oxidant formation and oxidative DNA damage”, Pharmacol. Ther, 53 (1992), 127–166 | DOI | DOI

[5] B. Demple, L. Harrison, “Repair of oxidative damage to DNA: enzymology and biology”, Annu. Rev. Biochem., 1994 | DOI | DOI

[6] D. B. Hall, R. E. Holmlin, J. K. Barton, “Oxidative DNA damage through long-range electron transfer”, Nature, 382 (1996), 731–735 | DOI | DOI

[7] V. D. Lakhno, A. V. Vinnikov, “Molekulyarnye ustroistva na osnove DNK”, Preprinty IPM im. M.V.Keldysha RAN, 2018, 137, 26 pp. | DOI | DOI

[8] S. Skourtis, A. Nitzan, “Effects of initial state preparation on the distance dependence of electron transfer through molecular bridges and wires”, J. of Chem. Phys, 119 (2003), 6271–6276 | DOI | DOI

[9] H. Landa, G. Misguich, “Nonlocal correlations in noisy multiqubit systems simulated using matrix operators”, SciPost Phys. Core, 2023 | DOI | DOI

[10] A. Landi, A. Capobianco, A. Peluso, “Coherent Effects in Charge Transport in Molecular Wires: Toward a Unifying Picture of Long-Range Hole Transfer in DNA”, J. Phys. Chem. Lett, 11 (2020), 7769–7775 | DOI | DOI

[11] A. N. Nardi, M. D'Abramo, A. Amadei, “Modeling Charge Transfer Reactions by Hopping between Electronic Ground State Minima: Application to Hole Transfer between DNA Bases”, Molecules, 27 (2022), 7408 | DOI | DOI

[12] R. P.A. Lima, A. V. Malyshev, “Charge transfer mechanisms in DNA at finite temperatures: From quasiballistic to anomalous subdiffusive charge transfer”, Phys. Rev. E, 106 (2022), 024414 | DOI | DOI

[13] B. Halliwell, J. M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 1999 | DOI | DOI

[14] H. Sies, W. A. Schulz, S. Steenken, “Adjacent Guanines as Preferred Sites for Strand Breaks in Plasmid DNA Irradiated with 193 nm and 248 nm UV laser light”, Photochem. Photobiol. B, 32 (1996), 97–102 | DOI | DOI

[15] P. Wolf, G. D.D. Jones, L. P. Candeias, P. O'Neil, “Introduction of Strand Breaks in Polynucleotides and DNA by Sulfate Radical Anion: Role of Electron Loss Centres as Precursors of Strand Breakage”, Int. J. Radiat. Biol, 64 (1993), 7–18 | DOI | DOI

[16] H. Sugiyama, I. Saito, “Theoretical Studies of GC-Specific Photocleavage of DNA via Electron Transfer: Significant Lowering of Ionization Potential and 5'-Localization of HOMO of Stacked G Bases in B-Form DNA”, J. Am. Chem. Soc, 118 (1996), 7063–7068 | DOI | DOI

[17] I. Saito, T. Nakamura, K. Nakatani, Y. Yoshioka, K. Yamaguchi, H. Sugiyama, “Mapping of the Hot Spots for DNA Damage by One-Electron Oxidation: Efficacy of GG Doublets and GGG Triplets as a Trap in Long-Range Hole Migration”, J. Am. Chem. Soc, 120 (1998), 12686–12687 | DOI | DOI

[18] A. M. Brun, A. J. Harriman, “Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases”, J. Am. Chem. Soc, 114 (1992), 3656–3660 | DOI | DOI

[19] T. J. Mead, J. F. Kayem, “Electron Transfer through DNA: Site- Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors”, Angew. Chem. Int. Ed. Engl, 34 (1995), 352–354 | DOI | DOI

[20] A. Draganescu, T. D. Tullius, “Targeting of nucleic acids by iron complexes”, Metal Ions in Biological Systems, 33 (1996), 453–484

[21] C. J. Murphy, M. A. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix”, Science, 262 (1993), 1025–1029 | DOI | DOI

[22] A. M. Brun, A. Harriman, “Energy- and electron-transfer processes involving palladium phorphyrins bound to DNA”, J. Am. Chem. Soc, 116 (1994), 10383–10393 | DOI | DOI

[23] A. Harriman, “Electron Tunneling in DNA”, Angew. Chem. Int. Ed, 38 (1999), 945–949 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | DOI

[24] E. M. Boon, J. K. Barton, “Charge transport in DNA”, Curr. Opin. Stuct. Biol, 12 (2002), 320–329 | DOI | DOI

[25] B. Giese, J. Amaudrut, A. K. Kohler, M. Spormann, S. Wessely, “Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling”, Nature, 412 (2001), 318–320 | DOI | DOI

[26] B. Giese, “Long-distance charge transport in DNA: the hopping mechanism”, Acc. Chem. Res, 33 (2000), 631–636 | DOI | DOI

[27] D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules”, Nature, 403 (2000), 635–638 | DOI | DOI

[28] T. Shigematsu, K. Shimotani, C. Manabe, H. Watanabe, M. Shimizu, “Transport properties of carrier-injected DNA”, J. Chem. Phys, 118 (2003), 4245–4252 | DOI | DOI

[29] A. J. Storm, J. van Noort, S. de Vries, C. Dekker, “Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale”, Appl. Phys. Lett, 79 (2001), 3881–3883 | DOI | DOI

[30] K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, J. Kim, J. J. Kim, H. Y. Lee, T. Kawai, H. Y. Choi, “Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules”, Phys. Rev. Lett, 87 (2001), 198102 | DOI | DOI

[31] C. Z. Li, Y. T. Long, H. B. Kraatz, J. S. Lee, “Electrochemical Investigations of M-DNA Self-Assembled Monolayers on Gold Electrodes”, J. Phys. Chem. B, 107 (2003), 2291–2296 | DOI | DOI

[32] S. D. Wetting, D. O. Wood, J. S. Lee, “Thermodynamic investigation of M-DNA: a novel metal ion-DNA complex”, Journal of Inorganic Biochemistry, 94 (2003), 94–99 | DOI | DOI

[33] G. Cuniberti, G. Fagas, K. Richter, Introducing Molecular Electronics, Lecture Notes in Physics, 680, Springer-Verlag, Berlin–Heidelberg, 2005 | DOI | DOI

[34] F. Grozema, Y. Berlin, L. Siebbeles, Mechanism of Charge Migration through DNA: Molecular Wire Behavior, Single-Step Tunneling or Hopping?, J. Am. Chem. Soc., 122:44 (2000), 10903–10909 | DOI | DOI

[35] X. F. Wang, T. Chakraborty, “Charge Transfer via a Two-Strand Superexchange Bridge in DNA”, Phys. Rev. Lett, 97 (2006), 106602 | DOI | DOI

[36] D. Segal, A. Nitzan, W. B. Davis, M. R. Wasielewski, M. A. Ratner, “Electron Transfer Rates in Bridged Molecular Systems 2. A Steady-State Analysis of Coherent Tunneling and Thermal Transitions”, J. Phys. Chem. B, 104 (2000), 3817–3829 | DOI | DOI

[37] R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Lect. Notes Phys., Springer, Berlin–Heidelberg, 2007, 717 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[38] E. A. Weiss, G. Katz, R. H. Goldsmith, M. R. Wasielewski, M. A. Ratner, “Electron transfer mechanism and the locality of the system-bath interaction: A comparison of local, semilocal, and pure dephasing models”, J. Chem. Phys, 124 (2006), 074501 | DOI | DOI

[39] V. D. Lakhno, “Sequence Dependent Hole Evolution in DNA”, J. Biol. Phys, 30 (2004), 123–138 | DOI | DOI

[40] N. S. Fialko, V. D. Lakhno, “Numerical Modeling of the Charge Transfer Along 1D Molecular Chain “Donor-Bridge-Acceptor” at T=300K”, Lecture Notes in Computer Science, 11386 (2019), 225–232 | DOI | MR | Zbl | DOI | MR | Zbl

[41] N. S. Fialko, V. D. Lakhno, “Perenos zaryada v 1D-tsepochke pri T = 300 K”, Preprinty IPM im. M.V.Keldysha, 2018, 077, 17 pp. | DOI | DOI

[42] S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 2005, 404 pp.

[43] D. A. Ryndyk, R. Gutierrez, B. Song, G. Cuniberti, “Green function techniques in the treatement of quantum transport at the molecular scale”, Energy Transfer Dynamics in Biomaterial Systems, Springer Series in Chemical Physics, 93, Springer-Verlag, Berlin–Heidelberg, 2009 | DOI | DOI

[44] M. Kilgour, D. Segal, “Charge transport in molecular junctions: From tunneling to hopping with the probe technique”, J. Chem. Phys, 143 (2015), 024111 | DOI | DOI

[45] L. G.D. Hawke, G. Kalosakas, C. Simserides, “Electronic parameters for charge transfer along DNA”, Eur. Phys. J. E, 32 (2010), 291–305 | DOI | DOI

[46] E. Rengifo, G. Murillo, J. C. Arce, “Modeling the bandstructures of B-DNA base stacks”, J. Appl. Phys, 113 (2013), 173703 | DOI | DOI

[47] E. Meggers, M. E. Michel-Beyerle, B. Giese, “Sequence Dependent Long Range Hole Transport in DNA”, J. Am. Chem. Soc, 120 (1998), 12950–12955 | DOI | DOI

[48] M. Bixon, J. Jortner, “Long-range and very long-range charge transport in DNA”, Chemical Physics, 281 (2002), 393–408 | DOI | DOI

[49] A. Voityuk, N. Rosch, M. Bixon, J. Jortner, “Electronic Coupling for Charge Transfer and Transport in DNA”, J. Phys. Chem. B, 104 (2000), 9740–9745 | DOI | DOI

[50] A. V. Syurakshin, V. D. Lakhno, V. Yu. Yushankhai, “Perenos zaryada v molekule DNK v ramkakh prostoi modeli otkrytoi kvantovoi sistemy”, Preprinty IPM im. M.V.Keldysha, 2021, 023, 26 pp. | DOI | DOI

[51] F. Petruchchione, Kh. P. Broier, Teoriya otkrytykh kvantovykh sistem, In-t kompyut. issled., Regulyar. i khaot. Dinamika, M.–Izhevsk, 2010, 824 pp.

[52] V. May, O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley VCH, 2004

[53] A. W. Chin, A. Datta, F. Caruso, S. F. Huelga, M. B. Plenio, “Noise-assisted energy transfer in quantum networks and light-harvesting complexes”, New J. Phys, 12 (2010), 065002 | DOI | DOI

[54] V. D. Lakhno, A. N. Korshunova, “Modelirovanie obrazovaniya samozakhvachennogo sostoyaniya v polinukleotidnoi tsepochke”, Nelineinaya dinam, 4:2 (2008), 193–214 | Zbl | Zbl

[55] M. B. Menskii, “Yavlenie dekogerentsii i teoriya nepreryvnykh kvantovykh izmerenii”, UFN, 168:9 (1998), 117–135 | DOI | DOI

[56] M. Schlosshauer, “Quantum Decoherence”, Physics Reports, 831 (2019), 1–57 | DOI | MR | DOI | MR

[57] W. H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?, Phys. Rev. D, 24 (1981), 1516–1525 | DOI | MR | DOI | MR

[58] W. H. Zurek, “Environment-induced superselection rules”, Phys. Rev. D, 26 (1982), 1862–1880 | DOI | MR | DOI | MR