Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2024_19_1_a11, author = {A. V. Syurakshin and V. D. Lakhno and V. Yu. Yushankhai}, title = {Computer simulation of charge transfer in a {DNA} molecule within a simple model of an open quantum system}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {212--231}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a11/} }
TY - JOUR AU - A. V. Syurakshin AU - V. D. Lakhno AU - V. Yu. Yushankhai TI - Computer simulation of charge transfer in a DNA molecule within a simple model of an open quantum system JO - Matematičeskaâ biologiâ i bioinformatika PY - 2024 SP - 212 EP - 231 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a11/ LA - ru ID - MBB_2024_19_1_a11 ER -
%0 Journal Article %A A. V. Syurakshin %A V. D. Lakhno %A V. Yu. Yushankhai %T Computer simulation of charge transfer in a DNA molecule within a simple model of an open quantum system %J Matematičeskaâ biologiâ i bioinformatika %D 2024 %P 212-231 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a11/ %G ru %F MBB_2024_19_1_a11
A. V. Syurakshin; V. D. Lakhno; V. Yu. Yushankhai. Computer simulation of charge transfer in a DNA molecule within a simple model of an open quantum system. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 212-231. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a11/
[1] J. D. Watson, F. H.C. Crick, “A structure for deoxyribose nucleic acid”, Nature, 171 (1953), 737–738 | DOI | DOI
[2] D. D. Eley, D. I. Spivey, “Semiconductivity of organic substances. Part 9. Nucleic acid in the dry state”, Trans. Faraday Soc, 58 (1962), 411–415 | DOI | DOI
[3] J. Dutreix, A. Wambersie, M. Tubiana, Introduction to radiobiology, CRC Press, London, 1990 | DOI | DOI
[4] K. Frenkel, “Carcinogen-mediated oxidant formation and oxidative DNA damage”, Pharmacol. Ther, 53 (1992), 127–166 | DOI | DOI
[5] B. Demple, L. Harrison, “Repair of oxidative damage to DNA: enzymology and biology”, Annu. Rev. Biochem., 1994 | DOI | DOI
[6] D. B. Hall, R. E. Holmlin, J. K. Barton, “Oxidative DNA damage through long-range electron transfer”, Nature, 382 (1996), 731–735 | DOI | DOI
[7] V. D. Lakhno, A. V. Vinnikov, “Molekulyarnye ustroistva na osnove DNK”, Preprinty IPM im. M.V.Keldysha RAN, 2018, 137, 26 pp. | DOI | DOI
[8] S. Skourtis, A. Nitzan, “Effects of initial state preparation on the distance dependence of electron transfer through molecular bridges and wires”, J. of Chem. Phys, 119 (2003), 6271–6276 | DOI | DOI
[9] H. Landa, G. Misguich, “Nonlocal correlations in noisy multiqubit systems simulated using matrix operators”, SciPost Phys. Core, 2023 | DOI | DOI
[10] A. Landi, A. Capobianco, A. Peluso, “Coherent Effects in Charge Transport in Molecular Wires: Toward a Unifying Picture of Long-Range Hole Transfer in DNA”, J. Phys. Chem. Lett, 11 (2020), 7769–7775 | DOI | DOI
[11] A. N. Nardi, M. D'Abramo, A. Amadei, “Modeling Charge Transfer Reactions by Hopping between Electronic Ground State Minima: Application to Hole Transfer between DNA Bases”, Molecules, 27 (2022), 7408 | DOI | DOI
[12] R. P.A. Lima, A. V. Malyshev, “Charge transfer mechanisms in DNA at finite temperatures: From quasiballistic to anomalous subdiffusive charge transfer”, Phys. Rev. E, 106 (2022), 024414 | DOI | DOI
[13] B. Halliwell, J. M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 1999 | DOI | DOI
[14] H. Sies, W. A. Schulz, S. Steenken, “Adjacent Guanines as Preferred Sites for Strand Breaks in Plasmid DNA Irradiated with 193 nm and 248 nm UV laser light”, Photochem. Photobiol. B, 32 (1996), 97–102 | DOI | DOI
[15] P. Wolf, G. D.D. Jones, L. P. Candeias, P. O'Neil, “Introduction of Strand Breaks in Polynucleotides and DNA by Sulfate Radical Anion: Role of Electron Loss Centres as Precursors of Strand Breakage”, Int. J. Radiat. Biol, 64 (1993), 7–18 | DOI | DOI
[16] H. Sugiyama, I. Saito, “Theoretical Studies of GC-Specific Photocleavage of DNA via Electron Transfer: Significant Lowering of Ionization Potential and 5'-Localization of HOMO of Stacked G Bases in B-Form DNA”, J. Am. Chem. Soc, 118 (1996), 7063–7068 | DOI | DOI
[17] I. Saito, T. Nakamura, K. Nakatani, Y. Yoshioka, K. Yamaguchi, H. Sugiyama, “Mapping of the Hot Spots for DNA Damage by One-Electron Oxidation: Efficacy of GG Doublets and GGG Triplets as a Trap in Long-Range Hole Migration”, J. Am. Chem. Soc, 120 (1998), 12686–12687 | DOI | DOI
[18] A. M. Brun, A. J. Harriman, “Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases”, J. Am. Chem. Soc, 114 (1992), 3656–3660 | DOI | DOI
[19] T. J. Mead, J. F. Kayem, “Electron Transfer through DNA: Site- Specific Modification of Duplex DNA with Ruthenium Donors and Acceptors”, Angew. Chem. Int. Ed. Engl, 34 (1995), 352–354 | DOI | DOI
[20] A. Draganescu, T. D. Tullius, “Targeting of nucleic acids by iron complexes”, Metal Ions in Biological Systems, 33 (1996), 453–484
[21] C. J. Murphy, M. A. Arkin, Y. Jenkins, N. D. Ghatlia, S. H. Bossmann, N. J. Turro, J. K. Barton, “Long-range photoinduced electron transfer through a DNA helix”, Science, 262 (1993), 1025–1029 | DOI | DOI
[22] A. M. Brun, A. Harriman, “Energy- and electron-transfer processes involving palladium phorphyrins bound to DNA”, J. Am. Chem. Soc, 116 (1994), 10383–10393 | DOI | DOI
[23] A. Harriman, “Electron Tunneling in DNA”, Angew. Chem. Int. Ed, 38 (1999), 945–949 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | DOI
[24] E. M. Boon, J. K. Barton, “Charge transport in DNA”, Curr. Opin. Stuct. Biol, 12 (2002), 320–329 | DOI | DOI
[25] B. Giese, J. Amaudrut, A. K. Kohler, M. Spormann, S. Wessely, “Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling”, Nature, 412 (2001), 318–320 | DOI | DOI
[26] B. Giese, “Long-distance charge transport in DNA: the hopping mechanism”, Acc. Chem. Res, 33 (2000), 631–636 | DOI | DOI
[27] D. Porath, A. Bezryadin, S. de Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules”, Nature, 403 (2000), 635–638 | DOI | DOI
[28] T. Shigematsu, K. Shimotani, C. Manabe, H. Watanabe, M. Shimizu, “Transport properties of carrier-injected DNA”, J. Chem. Phys, 118 (2003), 4245–4252 | DOI | DOI
[29] A. J. Storm, J. van Noort, S. de Vries, C. Dekker, “Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale”, Appl. Phys. Lett, 79 (2001), 3881–3883 | DOI | DOI
[30] K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, J. Kim, J. J. Kim, H. Y. Lee, T. Kawai, H. Y. Choi, “Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) DNA molecules”, Phys. Rev. Lett, 87 (2001), 198102 | DOI | DOI
[31] C. Z. Li, Y. T. Long, H. B. Kraatz, J. S. Lee, “Electrochemical Investigations of M-DNA Self-Assembled Monolayers on Gold Electrodes”, J. Phys. Chem. B, 107 (2003), 2291–2296 | DOI | DOI
[32] S. D. Wetting, D. O. Wood, J. S. Lee, “Thermodynamic investigation of M-DNA: a novel metal ion-DNA complex”, Journal of Inorganic Biochemistry, 94 (2003), 94–99 | DOI | DOI
[33] G. Cuniberti, G. Fagas, K. Richter, Introducing Molecular Electronics, Lecture Notes in Physics, 680, Springer-Verlag, Berlin–Heidelberg, 2005 | DOI | DOI
[34] F. Grozema, Y. Berlin, L. Siebbeles, Mechanism of Charge Migration through DNA: Molecular Wire Behavior, Single-Step Tunneling or Hopping?, J. Am. Chem. Soc., 122:44 (2000), 10903–10909 | DOI | DOI
[35] X. F. Wang, T. Chakraborty, “Charge Transfer via a Two-Strand Superexchange Bridge in DNA”, Phys. Rev. Lett, 97 (2006), 106602 | DOI | DOI
[36] D. Segal, A. Nitzan, W. B. Davis, M. R. Wasielewski, M. A. Ratner, “Electron Transfer Rates in Bridged Molecular Systems 2. A Steady-State Analysis of Coherent Tunneling and Thermal Transitions”, J. Phys. Chem. B, 104 (2000), 3817–3829 | DOI | DOI
[37] R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Lect. Notes Phys., Springer, Berlin–Heidelberg, 2007, 717 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[38] E. A. Weiss, G. Katz, R. H. Goldsmith, M. R. Wasielewski, M. A. Ratner, “Electron transfer mechanism and the locality of the system-bath interaction: A comparison of local, semilocal, and pure dephasing models”, J. Chem. Phys, 124 (2006), 074501 | DOI | DOI
[39] V. D. Lakhno, “Sequence Dependent Hole Evolution in DNA”, J. Biol. Phys, 30 (2004), 123–138 | DOI | DOI
[40] N. S. Fialko, V. D. Lakhno, “Numerical Modeling of the Charge Transfer Along 1D Molecular Chain “Donor-Bridge-Acceptor” at T=300K”, Lecture Notes in Computer Science, 11386 (2019), 225–232 | DOI | MR | Zbl | DOI | MR | Zbl
[41] N. S. Fialko, V. D. Lakhno, “Perenos zaryada v 1D-tsepochke pri T = 300 K”, Preprinty IPM im. M.V.Keldysha, 2018, 077, 17 pp. | DOI | DOI
[42] S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, 2005, 404 pp.
[43] D. A. Ryndyk, R. Gutierrez, B. Song, G. Cuniberti, “Green function techniques in the treatement of quantum transport at the molecular scale”, Energy Transfer Dynamics in Biomaterial Systems, Springer Series in Chemical Physics, 93, Springer-Verlag, Berlin–Heidelberg, 2009 | DOI | DOI
[44] M. Kilgour, D. Segal, “Charge transport in molecular junctions: From tunneling to hopping with the probe technique”, J. Chem. Phys, 143 (2015), 024111 | DOI | DOI
[45] L. G.D. Hawke, G. Kalosakas, C. Simserides, “Electronic parameters for charge transfer along DNA”, Eur. Phys. J. E, 32 (2010), 291–305 | DOI | DOI
[46] E. Rengifo, G. Murillo, J. C. Arce, “Modeling the bandstructures of B-DNA base stacks”, J. Appl. Phys, 113 (2013), 173703 | DOI | DOI
[47] E. Meggers, M. E. Michel-Beyerle, B. Giese, “Sequence Dependent Long Range Hole Transport in DNA”, J. Am. Chem. Soc, 120 (1998), 12950–12955 | DOI | DOI
[48] M. Bixon, J. Jortner, “Long-range and very long-range charge transport in DNA”, Chemical Physics, 281 (2002), 393–408 | DOI | DOI
[49] A. Voityuk, N. Rosch, M. Bixon, J. Jortner, “Electronic Coupling for Charge Transfer and Transport in DNA”, J. Phys. Chem. B, 104 (2000), 9740–9745 | DOI | DOI
[50] A. V. Syurakshin, V. D. Lakhno, V. Yu. Yushankhai, “Perenos zaryada v molekule DNK v ramkakh prostoi modeli otkrytoi kvantovoi sistemy”, Preprinty IPM im. M.V.Keldysha, 2021, 023, 26 pp. | DOI | DOI
[51] F. Petruchchione, Kh. P. Broier, Teoriya otkrytykh kvantovykh sistem, In-t kompyut. issled., Regulyar. i khaot. Dinamika, M.–Izhevsk, 2010, 824 pp.
[52] V. May, O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley VCH, 2004
[53] A. W. Chin, A. Datta, F. Caruso, S. F. Huelga, M. B. Plenio, “Noise-assisted energy transfer in quantum networks and light-harvesting complexes”, New J. Phys, 12 (2010), 065002 | DOI | DOI
[54] V. D. Lakhno, A. N. Korshunova, “Modelirovanie obrazovaniya samozakhvachennogo sostoyaniya v polinukleotidnoi tsepochke”, Nelineinaya dinam, 4:2 (2008), 193–214 | Zbl | Zbl
[55] M. B. Menskii, “Yavlenie dekogerentsii i teoriya nepreryvnykh kvantovykh izmerenii”, UFN, 168:9 (1998), 117–135 | DOI | DOI
[56] M. Schlosshauer, “Quantum Decoherence”, Physics Reports, 831 (2019), 1–57 | DOI | MR | DOI | MR
[57] W. H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?, Phys. Rev. D, 24 (1981), 1516–1525 | DOI | MR | DOI | MR
[58] W. H. Zurek, “Environment-induced superselection rules”, Phys. Rev. D, 26 (1982), 1862–1880 | DOI | MR | DOI | MR