Numerical modeling of myocardial infarction in multivessel coronary lesion. I.~Analysis of some model scenarios
Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 183-211

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the inflammatory phase of acute myocardial infarction in multivessel coronary lesion was performed using the methodology of mathematical modeling. The minimal reaction-diffusion mathematical model is focused on the description of the functional M1/M2 polarization of macrophages and the influence of factors of aseptic inflammation on the process of cardiomyocyte death. The initial conditions and dynamics of the process in the infarction nucleus are assumed to be consistent with laboratory measurement data. The nature of the spatiotemporal distribution of substances (cell populations and inflammatory mediators) and the features of the formation of nonlinear dynamic structures of demarcation inflammation are studied using model examples. The patterns of functioning of the basic mechanisms of the inflammatory response are analyzed, and the role of the main inflammatory mediators is evaluated. The previously obtained estimates of the effectiveness of anti-inflammatory therapeutic strategies based on cytokine management and macrophage polarization in complex heart attack scenarios with multivessel coronary lesion have been confirmed. The research results allow us to consider the accepted reaction-diffusion model with constant diffusion coefficients as an example of a formal mathematical description of an active environment in which dissipative (diffusion) and local biochemical processes compete with each other, as well as the pro-inflammatory link of innate immunity opposes the anti-inflammatory one. The ability of macrophages to functionally M1/M2 polarization and reprogramming plays a crucial role in this competition.The adequacy of the research results is confirmed by quantitative and qualitative agreement with experimental data.
@article{MBB_2024_19_1_a10,
     author = {O. F. Voropaeva and Ch. A. Tsgoev},
     title = {Numerical modeling of myocardial infarction in multivessel coronary lesion. {I.~Analysis} of some model scenarios},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {183--211},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a10/}
}
TY  - JOUR
AU  - O. F. Voropaeva
AU  - Ch. A. Tsgoev
TI  - Numerical modeling of myocardial infarction in multivessel coronary lesion. I.~Analysis of some model scenarios
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2024
SP  - 183
EP  - 211
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a10/
LA  - ru
ID  - MBB_2024_19_1_a10
ER  - 
%0 Journal Article
%A O. F. Voropaeva
%A Ch. A. Tsgoev
%T Numerical modeling of myocardial infarction in multivessel coronary lesion. I.~Analysis of some model scenarios
%J Matematičeskaâ biologiâ i bioinformatika
%D 2024
%P 183-211
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a10/
%G ru
%F MBB_2024_19_1_a10
O. F. Voropaeva; Ch. A. Tsgoev. Numerical modeling of myocardial infarction in multivessel coronary lesion. I.~Analysis of some model scenarios. Matematičeskaâ biologiâ i bioinformatika, Tome 19 (2024) no. 1, pp. 183-211. http://geodesic.mathdoc.fr/item/MBB_2024_19_1_a10/

[1] “Trete universalnoe opredelenie infarkta miokarda”, Rossiiskii kardiologicheskii zhurnal, 2s1 (2013), 3–16

[2] K. Thygesen, J. S. Alpert, A. S. Jaffe, B. R. Chaitman, J. J. Bax, D. A. Morrow, H. D. White et al, “Fourth universal definition of myocardial infarction”, Circulation, 138:20 (2018), e618-e651 | DOI | DOI

[3] Y. Kunita, K. Nakajima, T. Nakata, T. Kudo, S. Kinuya, “Prediction of multivessel coronary artery disease and candidates for stress-only imaging using multivariable models with myocardial perfusion imaging”, Annals of Nuclear Medicine, 36 (2022), 674–683 | DOI | DOI

[4] B. E. Stahli, F. Varbella, B. Schwarz, P. Nordbeck, S. B. Felix, I. M. Lang, A. Toma, M. Moccetti, C. Valina, M. Vercellino et al, “Rationale and design of the MULTISTARS AMI Trial: A randomized comparison of immediate versus staged complete revascularization in patients with ST-segment elevation myocardial infarction and multivessel disease”, American Heart Journal, 228 (2020), 98–108 | DOI | DOI

[5] J. J. Thune, J. E. Signorovitch, L. Kober, J. J. McMurray, K. Swedberg, J. Rouleau, A. Maggioni, E. Velazquez, R. Califf, M. A. Pfeffer, S. D. Solomon, “Predictors and prognostic impact of recurrent myocardial infarction in patients with left ventricular dysfunction, heart failure, or both following a first myocardial infarction”, Eur. J. Heart Fail, 13 (2011), 148–153 | DOI | DOI

[6] S. S. Al-Zaiti, C. Martin-Gill, J. K. Zegre-Hemsey, Z. Bouzid, Z. Faramand, M. O. Alrawashdeh, R. E. Gregg, S. Helman, N. T. Riek, K. Kraevsky-Phillips et al, “Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction”, Nature Medicine, 29 (2023), 1804–1813 | DOI | DOI

[7] S. H. Lee, M. H. Jeong, J. H. Ahn, Hyun D.Y, K. H. Cho, M. C. Kim, D. S. Sim, Y. J. Hong, J. H. Kim, Y. Ahn, J. Y. Hwang, W. Kim, J. S. Park, C. H. Yoon, S. H. Hur, S. R. Lee, K. S. Cha, and on behalf of the KAMIR (Korea Acute Myocardial Infarction Registry)-NIH Investigators, “Predictors of recurrent acute myocardial infarction despite successful percutaneous coronary intervention”, Korean J. Intern. Med., 37:4 (2022), 777–785 | DOI | DOI

[8] A. D. Erlikh ot imeni uchastnikov registra REKORD-3, “Cvyaz stepeni porazheniya koronarnogo rusla i osobennostei stentirovaniya s kratkosrochnymi i otdalennymi iskhodami u patsientov s ostrym koronarnym sindromom (dannye registra REKORD-3)”, Kardiologiya, 58:5 (2018), 5–12

[9] T. Baron, K. Hambraeus, J. Sundstrom, D. Erlinge, T. Jernberg, B. Lindahl, TOTAL AMI study group, “Type 2 myocardial infarction in clinical practice”, Heart, 101 (2015), 101–106 | DOI | DOI

[10] C. Troidl, H. Möllmann, H. Nef, F. Masseli, S. Voss, S. Szardien, M. Willmer, A. Rolf, J. Rixe, K. Troidl, S. Kostin, C. Hamm, A. Elsasser, “Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction”, J. Cell. Mol. Med., 13:9B (2009), 3485–3496 | DOI | DOI

[11] S. Frantz, M. Nahrendorf, “Cardiac macrophages and their role in ischaemic heart disease”, Cardiovascular research, 102:2 (2014), 240–248 | DOI | DOI

[12] A. Saxena, I. Russo, N. G. Frangogiannis, “Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges”, Translat. Res, 167:1 (2016), 152–166 | DOI | DOI

[13] Yu. S. Stafeev, M. Yu. Menshikov, V. A. Tkachuk, E. V. Parfenova, “Rol makrofagov v reparatsii miokarda posle povrezhdeniya i perspektivy metabolicheskogo pereprogrammirovaniya immunnykh kletok v tselyakh regulyatsii postinfarktnogo vosstanovleniya miokarda”, Kardiologiya, 57:12 (2017), 53–59

[14] M. Chen, X. Li, S. Wang, L. Yu, J. Tang, S. Zhou, “The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias”, Front. Physiol, 11 (2020), 1113 | DOI | DOI

[15] W. P. Lafuse, D. J. Wozniak, M. V.S. Rajaram, “Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair”, Cells, 10 (2020), 51 | DOI | DOI

[16] Y. Kim, S. Nurakhayev, A. Nurkesh, Z. Zharkinbekov, A. Saparov, “Macrophage polarization in cardiac tissue repair following myocardial infarction”, Int. J. Molecular Sciences, 22 (2021), 2715 | DOI | DOI

[17] Y. Wang, M. Hou, S. Duan, Z. Zhao, X. Wu, Y. Chen, L. Yin, “Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti inflammatory treatment of ischemia-reperfusion (IR) injury”, Bioactive Materials, 17 (2022), 320–333 | DOI | DOI

[18] M. A.C. Fontaine, H. Jin, M. Gagliardi, M. Rousch, E. Wijnands, M. Stoll, X. Li, L. Schurgers, C. Reutelingsperger, C. Schalkwijk et al, “Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair”, Advanced Science, 10 (2023), 2203053 | DOI | DOI

[19] N. G. Frangogiannis, “Regulation of the inflammatory response in cardiac repair”, Circulation Research, 110 (2012), 159–173 | DOI | DOI

[20] C. A. Tsgoev, O. F. Voropaeva, Y. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russian Journal of Numerical Analysis and Mathematical Modelling, 35:2 (2020), 111–126 | DOI | MR | Zbl | DOI | MR | Zbl

[21] O. F. Voropaeva, C. A. Tsgoev, Yu. I. Shokin, “Numerical simulation of the inflammatory phase of myocardial infarction”, Journal of Applied Mechanics and Technical Physics, 62:3 (2021), 441–450 | DOI | MR | DOI | MR

[22] O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda. I. Analiz prostranstvenno-vremennykh aspektov razvitiya mestnoi vospalitelnoi reaktsii”, Matematicheskaya biologiya i bioinformatika, 18:1 (2023), 49–71 | DOI | DOI

[23] O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda. II. Analiz mekhanizma polyarizatsii makrofagov kak terapevticheskoi misheni”, Matematicheskaya biologiya i bioinformatika, 18:2 (2023), 367–404 | DOI | DOI

[24] J. Chen, D. K. Ceholski, L. Liang, K. Fish, R. J. Hajjar, “Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice”, Am. J. Physiol. Heart Circ. Physiol., 313 (2017), H275-H282 | DOI | DOI

[25] T. P. Martin, E. A. MacDonald, A. A.M. Elbassioni, D. O'Toole, A. A.I. Zaeri, S. A. Nicklin, G. A. Gray, C. M. Loughrey, “Preclinical models of myocardial infarction: from mechanism to translation”, British J. Pharmacol, 179 (2022), 770–791 | DOI | DOI

[26] M. L. Lindsey, R. Bolli, J. M. Jr. Canty, X. J. Du, N. G. Frangogiannis, S. Frantz, R. G. Gourdie, J. W. Holmes, S. P. Jones, R. A. Kloner, D. J. Lefer, R. Liao, E. Murphy, P. Ping, K. Przyklenk, F. A. Recchia, L. Schwartz Longacre, C. M. Ripplinger, J. E. VanEyk, G. Heusch, “Guidelines for experimental models of myocardial ischemia and infarction”, Am. J. Physiol. Heart Circ. Physiol., 314 (2018), H812-H838 | DOI | DOI

[27] H. Kolesova, M. Bartos, W. C. Hsieh, V. Olejnickova, D. Sedmera, “Novel approaches to study coronary vasculature development in mice”, Developmental Dynamics, 247 (2018), 1018–1027 | DOI | DOI

[28] M. L. Entman, K. Youker, T. Shoji, G. Kukielka, S. B. Shappell, A. A. Taylor, C. W. Smith, “Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence”, J. Clin. Invest, 90 (1992), 1335–1345 | DOI | DOI

[29] O. F. Voropaeva, Ch. A. Tsgoev, “Chislennaya model dinamiki faktorov vospaleniya v yadre infarkta miokarda”, Sibirskii zhurnal industrialnoi matematiki, 22:2 (78) (2019), 13–26 | Zbl | Zbl

[30] Y. F. Jin, H. C. Han, J. Berger, Q. Dai, M. L. Lindsey, “Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling”, BMC Systems Biology, 5 (2011), 30 | DOI | Zbl | DOI | Zbl

[31] I. Yu. Malyshev, S. V. Kruglov, L. Yu. Bakhtina, E. V. Malysheva, M. Zubin, M. Norkin, “Stress-otvet i apoptoz/nekroz v pro- i antivospalitelnom fenotipe makrofagov”, Byulleten eksperimentalnoi biologii i meditsiny, 138:8 (2004), 162–165

[32] I. Yu. Malyshev, “Fenomeny i signalnye mekhanizmy reprogrammirovaniya makrofagov”, Patologicheskaya fiziologiya i eksperimentalnaya terapiya, 59:2 (2015), 99–111 | MR | MR

[33] A. A. Fedorov, N. A. Ermak, T. S. Geraschenko, E. B. Topolnitskii, N. A. Shefer, E. O. Rodionov, M. N. Stakheeva, “Polyarizatsiya makrofagov: mekhanizmy, markery i faktory induktsii”, Sibirskii onkologicheskii zhurnal, 21:4 (2022), 124–136

[34] A. Sica, M. Erreni, P. Allavena, C. Porta, “Macrophage polarization in pathology”, Cell Mol. Life Sci, 72:21 (2015), 4111–4126 | DOI | DOI

[35] E. W. Hsu, R. Xue, A. Holmes, J. R. Forder, “Delayed reduction of tissue water diffusion after myocardial ischemia”, Am. J. Physiol., 275 (1998), H697-H702

[36] P. C. Lin, U. Kreutzer, T. Jue, “Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture”, Biophys. J., 92 (2007), 2608–2620 | DOI | DOI

[37] R. H. Anderson, S. Y. Ho, K. Redmann, D. Sanchez-Quintana, P. P. Lunkenheimer, “The anatomical arrangement of the myocardial cells making up the ventricular mass”, Europ. J. Cardio-thoracic Surgery, 28 (2005), 517–525 | DOI | DOI

[38] Z. A. Gouda, Y. H.A. Elewa, A. O. Selim, “Histological architecture of cardiac myofibers composing the left ventricle of murine heart”, J. Histology Histopathology, 2 (2015), 2 | DOI | DOI

[39] G. J. Strijkers, A. Bouts, W. M. Blankesteijn, T. H.J. M. Peeters, A. Vilanova, M. C. van Prooijen, H. M.H. F. Sanders, E. Heijman, K. Nicolay, “Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse”, NMR Biomedicine, 22 (2009), 182–190 | DOI | DOI

[40] Y. Wang, T. Yang, Y. Ma, G. V. Halade, J. Zhang, M. L. Lindsey, Y. F. Jin, “Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction”, BMC Genomics, 13 (2012), S21 | DOI | DOI

[41] A. Saxena, M. Bujak, O. Frunza, M. Dobaczewski, C. Gonzalez-Quesada, B. Lu, C. Gerard, N. G. Frangogiannis, “CXCR3-independent actions of the CXC chemokine CXCL10 in the infarctedmyocardium and in isolated cardiac fibroblasts are mediated through proteoglycans”, Cardiovascular Research, 103 (2014), 217–227 | DOI | DOI

[42] M. Bujak, M. Dobaczewski, K. Chatila, L. H. Mendoza, N. Li, A. Reddy, N. G. Frangogiannis, “Interleukin-1 Receptor Type I Signaling Critically Regulates Infarct Healing and Cardiac Remodeling”, Am. J. Pathol, 173 (2008), 57–67 | DOI | DOI

[43] V. L. van Zuylen, M. C. den Haan, H. Roelofs, W. E. Fibbe, M. J. Schalij, D. E. Atsma, “Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion”, SpringerPlus, 4 (2015), 336 | DOI | DOI

[44] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka. Sib. otd., Novosibirsk, 1967, 195 pp. | MR | MR

[45] M. Jung, Y. Ma, R. P. Iyer, K. Y. DeLeon-Pennell, A. Yabluchanskiy, M. R. Garrett, M. L. Lindsey, “IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation”, Basic. Res. Cardiol, 112:3 (2017), 33 | DOI | DOI

[46] A. I. Lobanov, T. K. Starozhilova, Nestatsionarnye struktury v modeli svertyvaniya krovi, Sait S.P. Kurdyumova, (data obrascheniya: 14.05.2024) https://spkurdyumov.ru/biology/nestacionarnye-struktury-v-modeli-svertyvaniya-krovi/

[47] A. I. Lobanov, R. A. Pashkov, I. B. Petrov, A. A. Polezhaev, “Formirovanie prostranstvennykh struktur khemotaktilnymi bakteriyami Escherichia coli”, Matem. modelirovanie, 14:10 (2002), 17–26 | MR | Zbl | MR | Zbl

[48] A. N. Kolmogorov, Petrovskii I.G, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU., ser. Matematika i mekhanika, 1 (1937), 1–26

[49] A. M. Turing, “The chemical basis of morphogenesis”, Phyl. Trans. Roy. Soc, 237 (1952), 37–72 | MR | Zbl | MR | Zbl

[50] J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989, 760 pp. | MR | Zbl | MR | Zbl

[51] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992, 541 pp. | MR | MR

[52] G. R. Ivanitskii, A. B. Medvinskii, M. A. Tsyganov, “Ot besporyadka k uporyadochennosti na primere dvizheniya mikroorganizmov”, Uspekhi fizicheskikh nauk, 161:4 (1991), 13–71 | DOI | DOI

[53] V. K. Vanag, “Volny i dinamicheskie struktury v reaktsionno-diffuzionnykh sistemakh. Reaktsiya Belousova–Zhabotinskogo v obraschennoi mikroemulsii”, Uspekhi fizicheskikh nauk, 174:9 (2004), 991–1010 | DOI | DOI

[54] A. Saxena, I. Russo, N. G. Frangogiannis, “Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges”, Transl. Res, 167:1 (2016), 152–166 | DOI | DOI

[55] A. Saxena, W. Chen, Y. Su, V. Rai, O. U. Uche, N. Li, N. G. Frangogiannis, “IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium”, J. Immunol, 191:9 (2013), 4838–4848 | DOI | DOI

[56] M. A. Matter, F. Paneni, P. Libby, S. Frantz, B. E. Stahli, C. Templin, A. Mengozzi, Y. J. Wang, T. M. Kundig, L. Raber, F. Ruschitzka, C. M. Matter, “Inflammation in acute myocardial infarction: the good, the bad and the ugly”, European Heart Journal, 45:2 (2024), 89–103 | DOI | MR | DOI | MR

[57] D. Maidana, A. Arroyo-Alvarez, A. Arenas-Loriente, G. Barreres-Martin, C. Munoz Alfonso, D. B. Berroteran, F. E. Claramunt, R. B. del Burgo, P. Cepas-Guillen, S. Garcia Blas et al, “Inflammation as a New Therapeutic Target among Older Patients with Ischemic Heart Disease”, J. Clinical Medicine, 13 (2024), 363 | DOI | DOI

[58] V. Margarida, S. C.A. de Jager, J. P.G. Sluijter, Targeting Inflammation after Myocardial Infarction: A Therapeutic Opportunity for Extracellular Vesicles?, Int. J. Molecular Sciences, 22 (2021), 7831 | DOI | DOI

[59] P. Zymek, D. Y. Nah, M. Bujak, G. Ren, A. Koerting, T. Leucker, P. Huebener, G. Taffet, M. Entman, N. G. Frangogiannis, “Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling”, Cardiovasc. Res, 74:2 (2007), 313–322 | DOI | DOI

[60] I. Somasuntharam, K. Yehl, S. L. Carroll, J. T. Maxwell, M. D. Martinez, P. L. Che, M. E. Brown, K. Salaita, M. E. Davis, “Knockdown of TNF-? by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction”, Biomaterials, 83 (2016), 12–22 | DOI | DOI

[61] J. Lugrin, R. Parapanov, G. R. Milano, S. Cavin, A. Debonneville, T. Krueger, L. Liaudet, “The systemic deletion of interleukin-1? reduces myocardial inflammation and attenuates ventricular remodeling in murine myocardial infarction”, Scientific Reports, 13 (2023), 4006 | DOI | DOI

[62] C. Gao, Y. Liu, Q. Yu, Q. Yang, B. Li, L. Sun, W. Yan, X. Cai, E. Gao, L. Xiong, H. Wang, L. Tao, “TNF-$\alpha$ antagonism ameliorates myocardial ischemia-reperfusion injury in mice by upregulating adiponectin”, Am. J. Physiol. Heart Circ. Physiol., 308:12 (2015), H1583-H1591 | DOI | DOI