Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_a5, author = {A. E. Medvedev and A. D. Erokhin}, title = {Mathematical analysis of aortic deformation in aneurysm and wall dissection}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t94--t106}, publisher = {mathdoc}, volume = {18}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_a5/} }
TY - JOUR AU - A. E. Medvedev AU - A. D. Erokhin TI - Mathematical analysis of aortic deformation in aneurysm and wall dissection JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - t94 EP - t106 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_a5/ LA - en ID - MBB_2023_18_a5 ER -
A. E. Medvedev; A. D. Erokhin. Mathematical analysis of aortic deformation in aneurysm and wall dissection. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t94-t106. http://geodesic.mathdoc.fr/item/MBB_2023_18_a5/
[1] G. Melissano, Aortic dissection: Patients true stories and the innovations that saved their lives, Edi. Ermes, Milan, Italy, 2016, 439 pp.
[2] E. T. Razumova, V. A. Lusov, V. A. Kokorin, “Aortic dislayering”, Russian Journal of Cardiology, 31:5 (2001), 88–94 (in Russ.)
[3] R. Zorrilla, E. Soudah, R. Rossi, “Computational modeling of the fluid flow in type B aortic dissection using a modified finite element embedded formulation”, Biomechanics and Modeling in Mechanobiology, 19 (2020), 1565–1583 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10237- 020-01291-x'>10.1007/s10237- 020-01291-x</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4129187'>4129187</ext-link>
[4] A. E. Medvedev, “Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas”, Mathematical Biology and Bioinformatics, 17:S (2022), t30–t41 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2022.17.t30'>10.17537/2022.17.t30</ext-link>
[5] G. Mistelbauer, C. Rossl, K. Baumler, B. Preim, D. Fleischmann, “Implicit modeling of patient-specific aortic dissections with elliptic Fourier descriptors”, Computer Graphics Forum, 40 (2021), 423–434 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/cgf.14318'>10.1111/cgf.14318</ext-link>
[6] V. Jadaun, R. S. Nitin, “An application of soliton solutions of a differential equation in the progression of aortic dissection”, Mathematical Methods in the Applied Sciences, 2023 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/mma.9565'>10.1002/mma.9565</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4469305'>4469305</ext-link>
[7] L. Emerel, J. Thunes, T. Kickliter, M. Billaud, J. A. Phillippi, D. A. Vorp, S. Maiti, T. G. Gleason, “Predissection-derived geometric and distensibility indices reveal increased peak longitudinal stress and stiffness in patients sustaining acute type A aortic dissection: Implications for predicting dissection”, The Journal of Thoracic and Cardiovascular Surgery, 158:2 (2018), 355–363 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtcvs.2018.10.116'>10.1016/j.jtcvs.2018.10.116</ext-link>
[8] A. I. Lipovka, A. A. Karpenko, A. P. Chupakhin, D. V. Parshin, “Strength properties of abdominal aortic vessels: Experimental results and perspectives”, Journal of Applied Mechanics and Technical Physics, 63:2 (2022), 251–258 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0021894422020080'>10.1134/S0021894422020080</ext-link>
[9] T. E. Carew, R. N. Vaishnav, D. J. Patel, “Compressibility of the arterial wall”, Circulation Research, 23:1 (1968), 61–68 <ext-link ext-link-type='doi' href='https://doi.org/10.1161/01.RES.23.1.61'>10.1161/01.RES.23.1.61</ext-link>
[10] P. Skacel, J. Bursa, “Compressibility of arterial wall Direct measurement and predictions of compressible constitutive models”, Journal of the Mechanical Behavior of Biomedical Materials, 90 (2019), 538–546 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmbbm.2018.11.004'>10.1016/j.jmbbm.2018.11.004</ext-link>
[11] L. H. Peterson, R. E. Jensen, J. Parnell, “Mechanical properties of arteries in vivo”, Circulation Research, 8:3 (1960), 622–639 <ext-link ext-link-type='doi' href='https://doi.org/10.1161/01.RES.8.3.622'>10.1161/01.RES.8.3.622</ext-link>
[12] P. Skacel, J. Bursa, “Poisson's ratio and compressibility of arterial wall Improved experimental data reject auxetic behaviour”, Journal of the Mechanical Behavior of Biomedical Materials, 131 (2022), 105229 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmbbm.2022.105229'>10.1016/j.jmbbm.2022.105229</ext-link>
[13] M. A. Meyers, K. K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, 2008, 856 pp.
[14] C. Chuong, Y. Fung, “Three-dimensional stress distribution in arteries”, Journal of Biomechanical Engineering, 105:3 (1983), 268–274 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.3138417'>10.1115/1.3138417</ext-link>
[15] S. N. Bagayev, V. N. Zakharov, A. L. Markel, A. E. Medvedev, V. A. Orlov, V. I. Samsonov, V. M. Fomin, “Optimal structure of arterial vessel walls”, Doklady Physics, 49:9 (2004), 530–533 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/1.1810580'>10.1134/1.1810580</ext-link>
[16] A. E. Medvedev, V. I. Samsonov, V. M. Fomin, “Rational structure of blood vessels”, Journal of Applied Mechanics and Technical Physics, 47:3 (2006), 324–329 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10808-006-0059-3'>10.1007/s10808-006-0059-3</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1115.74035'>1115.74035</ext-link>
[17] S. Baek, R. L. Gleason, K. R. Rajagopal, J. D. Humphrey, “Theory of small on large: potential utility in computations of fluid-solid interactions in arteries”, Computer Methods in Applied Mechanics and Engineering, 196:31-32 (2007), 3070–3078 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cma.2006.06.018'>10.1016/j.cma.2006.06.018</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2326231'>2326231</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1127.74026'>1127.74026</ext-link>
[18] J. Ferruzzi, D. A. Vorp, J. D. Humphrey, “On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms”, Journal of the Royal Society Interface, 8:56 (2011), 435–450 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsif.2010.0299'>10.1098/rsif.2010.0299</ext-link>
[19] M. Amabili, K. Karazis, R. Mongrain, M. P. Paidoussis, R. Cartier, “A three-layer model for buckling of a human aortic segment under specific flow-pressure conditions”, International Journal for Numerical Methods in Biomedical Engineering, 28:5 (2012), 495–512 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cnm.1484'>10.1002/cnm.1484</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2922324'>2922324</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1243.92014'>1243.92014</ext-link>
[20] G. A. Holzapfel, T. C. Gasser, R. W. Ogden, “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, Journal of Elasticity and the Physical Science of Solids, 61:1 (2000), 1–48 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1010835316564'>10.1023/A:1010835316564</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1852945'>1852945</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1023.74033'>1023.74033</ext-link>
[21] G. A. Holzapfel, T. C. Gasser, M. Stadler, “A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis”, European Journal of Mechanics, A/Solids, 21:3 (2002), 441–463 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0997- 7538(01)01206-2'>10.1016/S0997- 7538(01)01206-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1827472'>1827472</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1100.74597'>1100.74597</ext-link>
[22] G. A. Holzapfel, G. Sommer, C. T. Gasser, P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling”, American Journal of Physiology-Heart and Circulatory Physiology, 289:5 (2005), H2048–H2058 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/ajpheart.00934.2004'>10.1152/ajpheart.00934.2004</ext-link>
[23] T. C. Gasser, R. W. Ogden, G. A. Holzapfel, “Hyperelastic modelling of arterial layers with distributed collagen fibre orientations”, Journal of the Royal Society Interface, 3:6 (2006), 15–35 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsif.2005.0073'>10.1098/rsif.2005.0073</ext-link>
[24] F. Nemavhola, T. Pandelani, H. Ngwangwa, “Fitting of hyperelastic constitutive models in different sheep heart regions based on biaxial mechanical tests”, Russian journal of biomechanics, 2022, no. 2, 19–30 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2022.2.02'>10.15593/RZhBiomeh/2022.2.02</ext-link>
[25] A. Giudici, A. W. Khir, J. M. Szafron, B. Spronck, “From uniaxial testing of isolated layers to a tri-layered arterial wall: A novel constitutive modelling framework”, Annals of Biomedical Engineering, 49:9 (2021), 2454–2467 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10439-021- 02775-2'>10.1007/s10439-021- 02775-2</ext-link>
[26] V. A. Kozlov, S. A. Nazarov, “Asymptotic models of anisotropic heterogeneous elastic walls of blood vessels”, Journal of Mathematical Sciences, 213:4 (2016), 561–581 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10958-016-2725-1'>10.1007/s10958-016-2725-1</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3464835'>3464835</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1344.35144'>1344.35144</ext-link>
[27] C. J. Chuong, Y. C. Fung, “Three-dimensional stress distribution in arteries”, Journal of Biomechanical Engineering, 105:3 (1983), 268–274 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.3138417'>10.1115/1.3138417</ext-link>
[28] H. S. Choi, R. Vito, “Two-dimensional stress-strain relationship for canine pericardium”, Journal of Biomechanical Engineering, 112:2 (1990), 153–159 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.2891166'>10.1115/1.2891166</ext-link>
[29] H. Ngwangwa, T. Msibi M. Pandelani, I. Mabuda, L. Semakane, F. Nemavhola, “Biomechanical analysis of sheep oesophagus subjected to biaxial testing including hyperelastic constitutive model fitting”, Heliyon, 8:5 (2012), 1–10 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.heliyon.2022.e09312'>10.1016/j.heliyon.2022.e09312</ext-link>
[30] D. Roy, C. Kauffmann, S. Delorme, S. Lerouge, G. Cloutier, G. Soulez, “A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts”, Computational and Mathematical Methods in Medicine, 2012:820389 (2012), 1–16 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2012/820389'>10.1155/2012/820389</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2969381'>2969381</ext-link>
[31] M. L. Raghavan, M. W. Webster, D. A. Vorp, “Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model”, Annals of Biomedical Engineering, 24:5 (1996), 573–582 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/bf02684226'>10.1007/bf02684226</ext-link>
[32] K. K. Skripachenko, A. A. Golyadkina, K. M. Morozov, N. O. Chelnokova, N. V. Ostrovsky, L. Y. Kossovich, “Biomechanical patient-oriented analysis of influence of the aneurysm on the hemodynamics of the thoracic aorta”, Russian journal of biomechanics, 23:4 (2019), 526–536 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2019.4.03'>10.15593/RZhBiomeh/2019.4.03</ext-link>
[33] Y. Shi, M. Zhu, Y. Chang, H. Qiao, Y. Liu, “The risk of stanford type-A aortic dissection with different tear size and location: a numerical study”, BioMedical Engineering OnLine, 15:128 (2016), 531–544 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12938-016-0258-y'>10.1186/s12938-016-0258-y</ext-link>
[34] Z. Y. Li, J. U-King-Im, T. Y. Tang, E. Soh, T. C. See, J. H. Gillard, “Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm”, Journal of Vascular Surgery, 47:5 (2008), 928–935 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jvs.2008.01.006'>10.1016/j.jvs.2008.01.006</ext-link>
[35] J. Kumara, A. Faye, “Prediction of failure envelope of calcified aneurysmatic tissue”, Procedia Structural Integrity, 42 (2022), 806–812 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.prostr.2022.12.102'>10.1016/j.prostr.2022.12.102</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4385596'>4385596</ext-link>
[36] L. Wang, S. M. Roper, N. A. Hill, X. Luo, “Propagation of dissection in a residually stressed artery model”, Biomechanics and Modeling in Mechanobiology, 16 (2017), 139–149 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10237-016-0806-1'>10.1007/s10237-016-0806-1</ext-link>