Mathematical analysis of aortic deformation in aneurysm and wall dissection
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t94-t106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Aortic dissection is an extremely severe pathology. From the viewpoint of mechanics, the aorta is a multilayered anisotropic reinforced shell, which is subjected to periodic loading under the action of pulsed blood pressure. Various issues of mathematical modeling of dissection of the aorta and large arteries are considered in the present study. Modern mathematical models of the aortic and arterial wall structures obtained by processing experimental data on biaxial stretching of samples are reviewed. These mathematical models can be conventionally divided into two classes: 1) effective models, where the internal structure of the walls is ignored, but mechanical parameters of the material “averaged” over the wall thickness are introduced; 2) structured models, which take into account the multilayered (up to three layers) structure of the artery with addition of one to four families of reinforcing fibers. One of the most popular models (Holzapfel–Gasser–Ogden model) is considered in detail. This model describes a two- or three-layered artery with two families of reinforcing fibers. For this model, tables of design parameters are provided, and numerical simulations of arterial rupture and dissection are performed. The blood vessel is subjected to pulse pressure of blood flowing through it. It is shown that rupture of the inner layer of the vessel leads to an increase in the stress at the outer wall of the vessel. As the rupture thickness and length increase, the stress at the outer wall of the vessel is also increased. If there is an aneurism of the vessel, the stress is twice that in the vessel without the aneurism. Dissection of the inner wall of the vessel leads to an increase in the stress at the wall: the stress decreases with increasing rupture width for a straight vessel and increases for a vessel with an aneurism. The stress calculations on the “tip” of delamination show that the maximum stress is reached at the outer wall of the rupture.
@article{MBB_2023_18_a5,
     author = {A. E. Medvedev and A. D. Erokhin},
     title = {Mathematical analysis of aortic deformation in aneurysm and wall dissection},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t94--t106},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_a5/}
}
TY  - JOUR
AU  - A. E. Medvedev
AU  - A. D. Erokhin
TI  - Mathematical analysis of aortic deformation in aneurysm and wall dissection
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - t94
EP  - t106
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_a5/
LA  - en
ID  - MBB_2023_18_a5
ER  - 
%0 Journal Article
%A A. E. Medvedev
%A A. D. Erokhin
%T Mathematical analysis of aortic deformation in aneurysm and wall dissection
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P t94-t106
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_a5/
%G en
%F MBB_2023_18_a5
A. E. Medvedev; A. D. Erokhin. Mathematical analysis of aortic deformation in aneurysm and wall dissection. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t94-t106. http://geodesic.mathdoc.fr/item/MBB_2023_18_a5/

[1] G. Melissano, Aortic dissection: Patients true stories and the innovations that saved their lives, Edi. Ermes, Milan, Italy, 2016, 439 pp.

[2] E. T. Razumova, V. A. Lusov, V. A. Kokorin, “Aortic dislayering”, Russian Journal of Cardiology, 31:5 (2001), 88–94 (in Russ.)

[3] R. Zorrilla, E. Soudah, R. Rossi, “Computational modeling of the fluid flow in type B aortic dissection using a modified finite element embedded formulation”, Biomechanics and Modeling in Mechanobiology, 19 (2020), 1565–1583 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10237- 020-01291-x'>10.1007/s10237- 020-01291-x</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4129187'>4129187</ext-link>

[4] A. E. Medvedev, “Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas”, Mathematical Biology and Bioinformatics, 17:S (2022), t30–t41 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2022.17.t30'>10.17537/2022.17.t30</ext-link>

[5] G. Mistelbauer, C. Rossl, K. Baumler, B. Preim, D. Fleischmann, “Implicit modeling of patient-specific aortic dissections with elliptic Fourier descriptors”, Computer Graphics Forum, 40 (2021), 423–434 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/cgf.14318'>10.1111/cgf.14318</ext-link>

[6] V. Jadaun, R. S. Nitin, “An application of soliton solutions of a differential equation in the progression of aortic dissection”, Mathematical Methods in the Applied Sciences, 2023 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/mma.9565'>10.1002/mma.9565</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4469305'>4469305</ext-link>

[7] L. Emerel, J. Thunes, T. Kickliter, M. Billaud, J. A. Phillippi, D. A. Vorp, S. Maiti, T. G. Gleason, “Predissection-derived geometric and distensibility indices reveal increased peak longitudinal stress and stiffness in patients sustaining acute type A aortic dissection: Implications for predicting dissection”, The Journal of Thoracic and Cardiovascular Surgery, 158:2 (2018), 355–363 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtcvs.2018.10.116'>10.1016/j.jtcvs.2018.10.116</ext-link>

[8] A. I. Lipovka, A. A. Karpenko, A. P. Chupakhin, D. V. Parshin, “Strength properties of abdominal aortic vessels: Experimental results and perspectives”, Journal of Applied Mechanics and Technical Physics, 63:2 (2022), 251–258 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0021894422020080'>10.1134/S0021894422020080</ext-link>

[9] T. E. Carew, R. N. Vaishnav, D. J. Patel, “Compressibility of the arterial wall”, Circulation Research, 23:1 (1968), 61–68 <ext-link ext-link-type='doi' href='https://doi.org/10.1161/01.RES.23.1.61'>10.1161/01.RES.23.1.61</ext-link>

[10] P. Skacel, J. Bursa, “Compressibility of arterial wall Direct measurement and predictions of compressible constitutive models”, Journal of the Mechanical Behavior of Biomedical Materials, 90 (2019), 538–546 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmbbm.2018.11.004'>10.1016/j.jmbbm.2018.11.004</ext-link>

[11] L. H. Peterson, R. E. Jensen, J. Parnell, “Mechanical properties of arteries in vivo”, Circulation Research, 8:3 (1960), 622–639 <ext-link ext-link-type='doi' href='https://doi.org/10.1161/01.RES.8.3.622'>10.1161/01.RES.8.3.622</ext-link>

[12] P. Skacel, J. Bursa, “Poisson's ratio and compressibility of arterial wall Improved experimental data reject auxetic behaviour”, Journal of the Mechanical Behavior of Biomedical Materials, 131 (2022), 105229 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmbbm.2022.105229'>10.1016/j.jmbbm.2022.105229</ext-link>

[13] M. A. Meyers, K. K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, 2008, 856 pp.

[14] C. Chuong, Y. Fung, “Three-dimensional stress distribution in arteries”, Journal of Biomechanical Engineering, 105:3 (1983), 268–274 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.3138417'>10.1115/1.3138417</ext-link>

[15] S. N. Bagayev, V. N. Zakharov, A. L. Markel, A. E. Medvedev, V. A. Orlov, V. I. Samsonov, V. M. Fomin, “Optimal structure of arterial vessel walls”, Doklady Physics, 49:9 (2004), 530–533 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/1.1810580'>10.1134/1.1810580</ext-link>

[16] A. E. Medvedev, V. I. Samsonov, V. M. Fomin, “Rational structure of blood vessels”, Journal of Applied Mechanics and Technical Physics, 47:3 (2006), 324–329 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10808-006-0059-3'>10.1007/s10808-006-0059-3</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1115.74035'>1115.74035</ext-link>

[17] S. Baek, R. L. Gleason, K. R. Rajagopal, J. D. Humphrey, “Theory of small on large: potential utility in computations of fluid-solid interactions in arteries”, Computer Methods in Applied Mechanics and Engineering, 196:31-32 (2007), 3070–3078 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cma.2006.06.018'>10.1016/j.cma.2006.06.018</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2326231'>2326231</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1127.74026'>1127.74026</ext-link>

[18] J. Ferruzzi, D. A. Vorp, J. D. Humphrey, “On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms”, Journal of the Royal Society Interface, 8:56 (2011), 435–450 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsif.2010.0299'>10.1098/rsif.2010.0299</ext-link>

[19] M. Amabili, K. Karazis, R. Mongrain, M. P. Paidoussis, R. Cartier, “A three-layer model for buckling of a human aortic segment under specific flow-pressure conditions”, International Journal for Numerical Methods in Biomedical Engineering, 28:5 (2012), 495–512 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cnm.1484'>10.1002/cnm.1484</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2922324'>2922324</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1243.92014'>1243.92014</ext-link>

[20] G. A. Holzapfel, T. C. Gasser, R. W. Ogden, “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, Journal of Elasticity and the Physical Science of Solids, 61:1 (2000), 1–48 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1010835316564'>10.1023/A:1010835316564</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1852945'>1852945</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1023.74033'>1023.74033</ext-link>

[21] G. A. Holzapfel, T. C. Gasser, M. Stadler, “A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis”, European Journal of Mechanics, A/Solids, 21:3 (2002), 441–463 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0997- 7538(01)01206-2'>10.1016/S0997- 7538(01)01206-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1827472'>1827472</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1100.74597'>1100.74597</ext-link>

[22] G. A. Holzapfel, G. Sommer, C. T. Gasser, P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling”, American Journal of Physiology-Heart and Circulatory Physiology, 289:5 (2005), H2048–H2058 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/ajpheart.00934.2004'>10.1152/ajpheart.00934.2004</ext-link>

[23] T. C. Gasser, R. W. Ogden, G. A. Holzapfel, “Hyperelastic modelling of arterial layers with distributed collagen fibre orientations”, Journal of the Royal Society Interface, 3:6 (2006), 15–35 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsif.2005.0073'>10.1098/rsif.2005.0073</ext-link>

[24] F. Nemavhola, T. Pandelani, H. Ngwangwa, “Fitting of hyperelastic constitutive models in different sheep heart regions based on biaxial mechanical tests”, Russian journal of biomechanics, 2022, no. 2, 19–30 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2022.2.02'>10.15593/RZhBiomeh/2022.2.02</ext-link>

[25] A. Giudici, A. W. Khir, J. M. Szafron, B. Spronck, “From uniaxial testing of isolated layers to a tri-layered arterial wall: A novel constitutive modelling framework”, Annals of Biomedical Engineering, 49:9 (2021), 2454–2467 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10439-021- 02775-2'>10.1007/s10439-021- 02775-2</ext-link>

[26] V. A. Kozlov, S. A. Nazarov, “Asymptotic models of anisotropic heterogeneous elastic walls of blood vessels”, Journal of Mathematical Sciences, 213:4 (2016), 561–581 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10958-016-2725-1'>10.1007/s10958-016-2725-1</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3464835'>3464835</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1344.35144'>1344.35144</ext-link>

[27] C. J. Chuong, Y. C. Fung, “Three-dimensional stress distribution in arteries”, Journal of Biomechanical Engineering, 105:3 (1983), 268–274 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.3138417'>10.1115/1.3138417</ext-link>

[28] H. S. Choi, R. Vito, “Two-dimensional stress-strain relationship for canine pericardium”, Journal of Biomechanical Engineering, 112:2 (1990), 153–159 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.2891166'>10.1115/1.2891166</ext-link>

[29] H. Ngwangwa, T. Msibi M. Pandelani, I. Mabuda, L. Semakane, F. Nemavhola, “Biomechanical analysis of sheep oesophagus subjected to biaxial testing including hyperelastic constitutive model fitting”, Heliyon, 8:5 (2012), 1–10 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.heliyon.2022.e09312'>10.1016/j.heliyon.2022.e09312</ext-link>

[30] D. Roy, C. Kauffmann, S. Delorme, S. Lerouge, G. Cloutier, G. Soulez, “A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts”, Computational and Mathematical Methods in Medicine, 2012:820389 (2012), 1–16 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2012/820389'>10.1155/2012/820389</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2969381'>2969381</ext-link>

[31] M. L. Raghavan, M. W. Webster, D. A. Vorp, “Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model”, Annals of Biomedical Engineering, 24:5 (1996), 573–582 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/bf02684226'>10.1007/bf02684226</ext-link>

[32] K. K. Skripachenko, A. A. Golyadkina, K. M. Morozov, N. O. Chelnokova, N. V. Ostrovsky, L. Y. Kossovich, “Biomechanical patient-oriented analysis of influence of the aneurysm on the hemodynamics of the thoracic aorta”, Russian journal of biomechanics, 23:4 (2019), 526–536 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2019.4.03'>10.15593/RZhBiomeh/2019.4.03</ext-link>

[33] Y. Shi, M. Zhu, Y. Chang, H. Qiao, Y. Liu, “The risk of stanford type-A aortic dissection with different tear size and location: a numerical study”, BioMedical Engineering OnLine, 15:128 (2016), 531–544 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/s12938-016-0258-y'>10.1186/s12938-016-0258-y</ext-link>

[34] Z. Y. Li, J. U-King-Im, T. Y. Tang, E. Soh, T. C. See, J. H. Gillard, “Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm”, Journal of Vascular Surgery, 47:5 (2008), 928–935 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jvs.2008.01.006'>10.1016/j.jvs.2008.01.006</ext-link>

[35] J. Kumara, A. Faye, “Prediction of failure envelope of calcified aneurysmatic tissue”, Procedia Structural Integrity, 42 (2022), 806–812 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.prostr.2022.12.102'>10.1016/j.prostr.2022.12.102</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4385596'>4385596</ext-link>

[36] L. Wang, S. M. Roper, N. A. Hill, X. Luo, “Propagation of dissection in a residually stressed artery model”, Biomechanics and Modeling in Mechanobiology, 16 (2017), 139–149 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10237-016-0806-1'>10.1007/s10237-016-0806-1</ext-link>