Flow in antroduodenal part of digestive tract: mathematical model and some results
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t54-t72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A submodel of the digestive system is developed within the framework of multilevel model predicting the evolution of human functional disorders under environment influence. The article is dedicated to some problems associated with the submodel of food flow in the stomach. Materials in details is devoted to the reconstruction algorithm of 3D form andtroduodenal part of the digestive tract, based on ultrasonography results, and to the algorithm of the mesh node displacement caused by the antral contraction wave propagation and the pyloric sphincter motor activity. 3D form obtained and mesh configuration changing algorithm translated to program code are used for the flow calculation in antroduodenal part of the tract. Flow characteristics of one/two phased medium with opened/closed pyloric sphincter are analyzed considering functional disorders of the stomach motility; results are compared with 2D case. Further development ways of the stomach submodel and the digestive system model are noted: considering functional disorders of the pyloric sphincter, periodicity disorders of the antral contraction wave propagation in the stomach, processes of the digestive juice secretion, absorption of substances into the circulatory system.
@article{MBB_2023_18_a3,
     author = {P. V. Trusov and N. V. Zaitseva and M. R. Kamaltdinov},
     title = {Flow in antroduodenal part of digestive tract: mathematical model and some results},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t54--t72},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_a3/}
}
TY  - JOUR
AU  - P. V. Trusov
AU  - N. V. Zaitseva
AU  - M. R. Kamaltdinov
TI  - Flow in antroduodenal part of digestive tract: mathematical model and some results
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - t54
EP  - t72
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_a3/
LA  - en
ID  - MBB_2023_18_a3
ER  - 
%0 Journal Article
%A P. V. Trusov
%A N. V. Zaitseva
%A M. R. Kamaltdinov
%T Flow in antroduodenal part of digestive tract: mathematical model and some results
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P t54-t72
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_a3/
%G en
%F MBB_2023_18_a3
P. V. Trusov; N. V. Zaitseva; M. R. Kamaltdinov. Flow in antroduodenal part of digestive tract: mathematical model and some results. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t54-t72. http://geodesic.mathdoc.fr/item/MBB_2023_18_a3/

[1] B. Gompertz, “On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies”, Philosophical Transactions of the Royal Society of London, 115 (1825), 513–585 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rstl.1825.0026'>10.1098/rstl.1825.0026</ext-link>

[2] W. M. Makeham, “On the Law of Mortality and the Construction of Annuity Tables”, J. Inst. Actuaries, 8 (1860), 301–310 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/S204616580000126X'>10.1017/S204616580000126X</ext-link>

[3] W. Weibull, “A statistical distribution function of wide applicability”, J. Appl. Mech. Trans., 18 (1951), 293–297 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.4010337'>10.1115/1.4010337</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0042.37903'>0042.37903</ext-link>

[4] L. A. Gavrilov, N. S. Gavrilova, “The reliability theory of aging and longevity”, Journal of Theoretical Biology, 213 (2001), 527–545 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jtbi.2001.2430'>10.1006/jtbi.2001.2430</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1936837'>1936837</ext-link>

[5] L. A. Gavrilov, N. S. Gavrilova, “Models of Systems Failure in Aging”, Handbook of Models for Human Aging, ed. Conn P.M., Elsevier Academic Press, Burlington, MA, 2006, 45–68 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/B978-012369391-4/50006-0'>10.1016/B978-012369391-4/50006-0</ext-link>

[6] L. P. Zueva, R. Kh. Yafaev, Epidemiology, Manual, Foliant Publishers, Sankt-Petersburg, 2005 (in Russ.)

[7] A. V. Korotaev, A. S. Malkov, D. A. Khalturina, Laws of History: Mathematical Modeling of Historical Macro Processes: Demography, Economy, Wars, M., 2005, 344 pp. (in Russ.)

[8] V. N. Novosel'tsev, “Modeling of the natural technologies of an organism for investigating processes for the control of the organism's vital activities”, Automation and Remote Control, 53:12 (1992), 1905–1913 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1229404'>1229404</ext-link>

[9] V. N. Novosel'tsev, Fundamental Research, 2008, no. 6, 71–73 (in Russ.)

[10] M. A. Paltsev, I. M. Kvetnoy, V. O. Polyakova, T. V. Kvetnaiya, A. V. Trofimov, “Neuroimmunoendocrine mechanisms of aging”, Advances in Gerontology, 1:1 (2011), 28–38 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S2079057011010103'>10.1134/S2079057011010103</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2815976'>2815976</ext-link>

[11] V. Kh. Khavinson, V. N. Anisimov, “35-year experience in research of peptide regulation of aging”, Advances in Gerontology, 22:1 (2009), 11–23 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10517-009-0650-8'>10.1007/s10517-009-0650-8</ext-link>

[12] V. A. Sakovich, M. V. Gogoleva, V. I. Red'ko, A. T. Gubin, “Radiation risk load model and its modifications”, Issues of Risk Analysis, 1:1 (2004), 76–98 (in Russ.)

[13] E. A. Mashintsov, Iakovlev A. E., Proceedings of Tula State University. Series: Mathematics, Mechanics, Information, 10:4 (2004), 138–174 (in Russ.)

[14] A. E. Iakovlev, Mathematical modeling of population health by using geoinformatics technologies, PhD Thesis (Technical Sciences), Tula, 2005, 125 pp. (in Russ.)

[15] N. V. Zaitseva, P. V. Trusov, P. Z. Shur, D. A. Kiryanov, V. M. Chigvintsev, M. Yu. Tsinker, “Mathematical approaches to the health risk assessment of heterogeneous environmental factors based on evolutionary models”, Health Risk Analysis, 2013, no. 1, 3–11 (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1284.03170'>1284.03170</ext-link>

[16] P. V. Trusov, N. V. Zaitseva, D. A. Kiryanov, M. R. Kamaltdinov, M. Ju. Cinker, V. M. Chigvintsev, D. V. Lanin, “A Mathematical Model for Evolution of Human Functional Disorders Influenced by Environment Factors”, Mathematical Biology and Bioinformatics, 7:2 (2012), 589–610 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2012.7.589'>10.17537/2012.7.589</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2963820'>2963820</ext-link>

[17] N. V. Zaitseva, D. A. Kiryanov, D. V. Lanin, V. M. Chigvintsev, “A mathematical model of the immune and neuroendocrine systems mutual regulation under the technogenic chemical factors impact”, Computational and Mathematical Methods in Medicine, 2014 (2014), 492489 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2014/492489'>10.1155/2014/492489</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3206849'>3206849</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1307.92102'>1307.92102</ext-link>

[18] C. Feinle, P. Kunz, P. Boesiger, M. Fried, W. Schwizer, “Scintigraphic validation of a magnetic resonance imaging method to study gastric emptying of a solid meal in human”, Gut, 44 (1999), 106–111 <ext-link ext-link-type='doi' href='https://doi.org/10.1136/gut.44.1.106'>10.1136/gut.44.1.106</ext-link>

[19] L. Marciani, P. A. Gowland, R. C. Spiller, P. Manoj, J. R. Moore, P. Young, S. Al-Sahab, D. Bush, J. Wright, A. J. Fillery-Travis, “Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans”, The journal of nutrition, 130 (2000), 122–127 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/jn/130.1.122'>10.1093/jn/130.1.122</ext-link>

[20] K. L. Jones, D. G. O'Donovan, M. Horowitz, A. Russo, Y. Lei, T. Hausken, “Effects of posture on gastric emptying, transpyloric flow, and hunger after a glucose drink in healthy humans”, Dig. Dis. Sci., 51 (2006), 1331–1338 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10620-005- 9010-3'>10.1007/s10620-005- 9010-3</ext-link>

[21] H. P. Simonian, A. H. Maurer, L. C. Knight, S. Kantor, D. Kontos, V. Megalooikonomou, R. S. Fisher, H. P. Parkman, “Simultaneous assessment of gastric accommodation and emptying: studies with liquid and solid meals”, J. Nucl. Med., 45 (2004), 1155–1160

[22] D. Liao, H. Gregersen, T. Hausken, O. H. Gilja, M. Mundt, G. Kassab, “Analysis of surface geometry of the human stomach using real-time 3-D ultrasonography in vivo”, Neurogastroenterol Motil, 16 (2004), 315–324 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365- 2982.2004.00522.x'>10.1111/j.1365- 2982.2004.00522.x</ext-link>

[23] J. B. Frokjaer, S. D. Andersen, A. M. Drewes, H. Gregersen, “Ultrasound-determined geometric and biomechanical properties of the human duodenum”, Dig. Dis. Sci., 51 (2006), 1662–1669 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10620-005-9015-y'>10.1007/s10620-005-9015-y</ext-link>

[24] N. V. Karasikov, A. G. Mikheev, L. E. Mishulin, B. V. Rakitin, M. M. Trifonov, S. I. Schookin, “Gastrointensinal manometry with medical device “Gastroscan-D””, Biomedical Radio Electronics, 2011, no. 10, 79–83 (in Russ.)

[25] S. A. Chernyakevich, “Motor function of upper sections of digestive system in norm and pathology”, Russian Journal of Gastroenterology, Hepatology, Coloproctology, 1998, no. 2, 33–39 (in Russ.)

[26] H. U. De Schepper, F. Cremonini, D. Chitkara, M. Camilleri, “Assessment of gastric accommodation: overview and evaluation of current methods”, Neurogastroenterol. Motil, 16 (2004), 275–285 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2982.2004.00497.x'>10.1111/j.1365-2982.2004.00497.x</ext-link>

[27] E. A. Kornienko, M. A. Dmitrienko, Iu. A. Nikulin, E. I. Filiushkina, I. P. Filiushkin, Using Medical Equipment in Gastroenterological Diagnostics, Handbook, Sankt-Petersburg, 2006, 103 pp. (in Russ.)

[28] V. A. Stupin, G. O. Smirnova, M. V. Baglaenko, S. V. Siluyanov, D. B. Zakirov, “Peripheral electrogastroenterography in the diagnosis of disorders of motor-evacuation function of the gastrointestinal tract”, The Practitioner, 2005, no. 2, 60–62 (in Russ.)

[29] G. O. Smirnova, S. V. Siluyanov, Peripheral Electrogastroenterography in Clinical Practice, ed. V.A. Stupin, M., 2009, 20 pp. (in Russ.)

[30] S. I. Rapoport, A. A. Lakshin, B. V. Rakitin, M. M. Trifonov, pH metry of the esophagus and stomach in the upper digestive tract diseases, ed. F.I. Komarov, Medpraktika-M, M., 2005, 208 pp. (in Russ.)

[31] V. N. Sotnikov, T. K. Dubinskaia, A. V. Volova, G. A. Iakovlev, The Role of Endoscopic pH metry in Estimation of the Acid-forming Function of the Stomach, Physician Handbook, M., 2005, 35 pp. (in Russ.)

[32] A. G. Oomen, C. J.M. Rompelberg, M. A. Bruil, C. J.G. Dobbe, D. P.K. H. Pereboom, A. J.A. M. Sips, “Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants”, Archives of environmental contamination and toxicology, 44 (2003), 281–287 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00244-002-1278-0'>10.1007/s00244-002-1278-0</ext-link>

[33] J. G. Arnold, A. Dubois, “In vitro studies of intragastric digestion”, Digestive disease and sciences, 28 (1983), 737–741 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01312565'>10.1007/BF01312565</ext-link>

[34] E. Hedren, V. Diaz, U. Svanberg, “Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method”, European Journal of clinical Nutrition, 56 (2002), 425–430 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/sj.ejcn.1601329'>10.1038/sj.ejcn.1601329</ext-link>

[35] E. Hedren, V. Diaz, U. Svanberg, “Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method”, European Journal of clinical Nutrition, 56 (2002), 425–430 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/sj.ejcn.1601329'>10.1038/sj.ejcn.1601329</ext-link>

[36] A. M. Nagah, C. J. Seal, “In vitro procedure to predict apparent antioxidant release from wholegrain foods measured using three different analytical methods”, Journal of the science of food and agriculture, 85 (2005), 1177–1185 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jsfa.2106'>10.1002/jsfa.2106</ext-link>

[37] K. R. Walsh, Y. C. Zhang, Y. Vodovitz, S. J. Schwartz, M. L. Failla, “Stability and bioaccessibility of isoflavones from soy bread during in vitro digestion”, Journal of agricultural and food chemistry, 51 (2003), 4603–4609 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jf0342627'>10.1021/jf0342627</ext-link>

[38] K. Molly, M. V. Woestyne, W. Verstraete, “Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem”, Appl. Microbiol. Biotechnol, 39 (1993), 254–258 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00228615'>10.1007/BF00228615</ext-link>

[39] J. M. Cardot, E. Beyssac, M. Alric, “In vitro-in vivo correlation: importance of dissolution in IVIVC”, Dissolution technologies, 14 (2007), 15–19 <ext-link ext-link-type='doi' href='https://doi.org/10.14227/DT140107P15'>10.14227/DT140107P15</ext-link>

[40] F. Kong, R. P. Singh, “Modes of disintegration of solid foods in simulated gastric environment”, Food biophysics, 4 (2009), 180–190 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11483-009-9116-9'>10.1007/s11483-009-9116-9</ext-link>

[41] F. Kong, R. P. Singh, “Solid loss of carrots during simulated gastric digestion”, Food biophysics, 6 (2011), 84–93 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11483-010-9178-8'>10.1007/s11483-010-9178-8</ext-link>

[42] K. Schulze, “Imaging and modeling of digestion in the stomach and the duodenum”, Neurogastroenterol. Motil, 18 (2006), 172–183 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365- 2982.2006.00759.x'>10.1111/j.1365- 2982.2006.00759.x</ext-link>

[43] B. A. Samura, A. V. Dralkin, Pharmacokinetika, Khar'kov, 1996, 286 pp. (in Russ.)

[44] V. H. Colov'ev, A. A. Firsov, V. A. Filov, Pharmacokinetika, M., 1980, 432 pp. (in Russ.)

[45] Ferrua M.J, R. P. Singh, “Modeling the fluid dynamics in a human stomach to gain insight of food digestion”, Journal of food science, 75 (2010), 151–162 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1750-3841.2010.01748.x'>10.1111/j.1750-3841.2010.01748.x</ext-link>

[46] S. Singh, R. P. Singh, “Gastric Digestion of Foods: Mathematical Modeling of Flow Field in a Human Stomach”, Food Engineering Interfaces, 2011, 99–117

[47] Z. Xue, M. J. Ferrua, R. P. Singh, “Computational fluid dynamics modeling of granular flow in human stomach”, Alimentos hoy, 21 (2012), 3–14

[48] S. Dillard, S. Krishnan, H. S. Udaykumar, “Mechanics of flow and mixing at antroduodenal junction”, World J. Gastroenterol, 13 (2007), 1365–1371 <ext-link ext-link-type='doi' href='https://doi.org/10.3748/wjg.v13.i9.1365'>10.3748/wjg.v13.i9.1365</ext-link>

[49] H. Kozu, I. Kobayashi, M. Nakajima, K. Uemura, S. Sato, S. Ichikawa, “Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD”, Food Biophysics, 5 (2010), 330–336 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11483-010-9183-y'>10.1007/s11483-010-9183-y</ext-link>

[50] F. Kong, R. P. Singh, “Disintegration of solid foods in human stomach”, Journal of food science, 73 (2008), 67–80 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1750-3841.2008.00766.x'>10.1111/j.1750-3841.2008.00766.x</ext-link>

[51] A. Pal, K. Indireshkumar, W. Schwizer, B. Abrahamsson, M. Fried, J. G. Brasseur, “Gastric flow and mixing studied using computer simulation”, Proc. R. Soc. Lond. B, 271 (2004), 2587–2594 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rspb.2004.2886'>10.1098/rspb.2004.2886</ext-link>

[52] A. Pal, Brasseur J.G, B. Abrahamsson, “A stomach road or “Magenstrasse” for gastric emptying”, Journal of Biomechanics, 40 (2007), 1202–1210 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2006.06.006'>10.1016/j.jbiomech.2006.06.006</ext-link>

[53] P. V. Trusov, N. V. Zaytseva, M. R. Kamaltdinov, “Simulation of digestion processes in consideration of functional disorders in a human organism: conceptual and mathematical formulations, model structure”, Russian Journal of Biomechanics, 17:4 (2013), 60–74 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link>

[54] R. I. Nigmatulin, Dynamics of Multiphase Media, v. 1, Hemisphere, Washington, 1991

[55] L. Schiller, Z. Naumann, “A drag coefficient correlation”, Ver. Deutsh. Ing., 77 (1935), 318

[56] G. Barequet, D. Shapiro, A. Tal, “Multilevel sensitive reconstruction of polyhedral surfaces from parallel slices”, The Visual Computer, 16 (2000), 116–133 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s003710050201'>10.1007/s003710050201</ext-link>

[57] S. Lobregt, A. Viergever, “A discrete dynamic contour model”, IEEE transactions on medical imaging, 14 (1995), 12–24 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/42.370398'>10.1109/42.370398</ext-link>

[58] A. Nedzvezd, P. Lukashevich, S. Ablameyko, T. M. Deserno, Lehmann, “Reconstruction of 3D medical object shapes from 2D cross-sections”, Pattern recognition and information processing: proceedings of the tenth international conference, eds. Krasnoproshin V., S. Ablameyko, R. Sadykhov, 2009, 247–250

[59] R. N. Rohling, 3D Freehand Ultrasound: Reconstruction and Spatial Compounding, PhD Dissertation, University of Cambridge, 1998, 158 pp.

[60] G. M. Treece, Volume Measurement and Surface Visualisation in Sequential Freehand 3d Ultrasound, PhD Dissertation, University of Cambridge, 2000, 172 pp.

[61] Ansys fluent 12.0. Theory guide, 2009