Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_a3, author = {P. V. Trusov and N. V. Zaitseva and M. R. Kamaltdinov}, title = {Flow in antroduodenal part of digestive tract: mathematical model and some results}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t54--t72}, publisher = {mathdoc}, volume = {18}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_a3/} }
TY - JOUR AU - P. V. Trusov AU - N. V. Zaitseva AU - M. R. Kamaltdinov TI - Flow in antroduodenal part of digestive tract: mathematical model and some results JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - t54 EP - t72 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_a3/ LA - en ID - MBB_2023_18_a3 ER -
%0 Journal Article %A P. V. Trusov %A N. V. Zaitseva %A M. R. Kamaltdinov %T Flow in antroduodenal part of digestive tract: mathematical model and some results %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P t54-t72 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_a3/ %G en %F MBB_2023_18_a3
P. V. Trusov; N. V. Zaitseva; M. R. Kamaltdinov. Flow in antroduodenal part of digestive tract: mathematical model and some results. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t54-t72. http://geodesic.mathdoc.fr/item/MBB_2023_18_a3/
[1] B. Gompertz, “On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies”, Philosophical Transactions of the Royal Society of London, 115 (1825), 513–585 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rstl.1825.0026'>10.1098/rstl.1825.0026</ext-link>
[2] W. M. Makeham, “On the Law of Mortality and the Construction of Annuity Tables”, J. Inst. Actuaries, 8 (1860), 301–310 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/S204616580000126X'>10.1017/S204616580000126X</ext-link>
[3] W. Weibull, “A statistical distribution function of wide applicability”, J. Appl. Mech. Trans., 18 (1951), 293–297 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.4010337'>10.1115/1.4010337</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0042.37903'>0042.37903</ext-link>
[4] L. A. Gavrilov, N. S. Gavrilova, “The reliability theory of aging and longevity”, Journal of Theoretical Biology, 213 (2001), 527–545 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jtbi.2001.2430'>10.1006/jtbi.2001.2430</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1936837'>1936837</ext-link>
[5] L. A. Gavrilov, N. S. Gavrilova, “Models of Systems Failure in Aging”, Handbook of Models for Human Aging, ed. Conn P.M., Elsevier Academic Press, Burlington, MA, 2006, 45–68 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/B978-012369391-4/50006-0'>10.1016/B978-012369391-4/50006-0</ext-link>
[6] L. P. Zueva, R. Kh. Yafaev, Epidemiology, Manual, Foliant Publishers, Sankt-Petersburg, 2005 (in Russ.)
[7] A. V. Korotaev, A. S. Malkov, D. A. Khalturina, Laws of History: Mathematical Modeling of Historical Macro Processes: Demography, Economy, Wars, M., 2005, 344 pp. (in Russ.)
[8] V. N. Novosel'tsev, “Modeling of the natural technologies of an organism for investigating processes for the control of the organism's vital activities”, Automation and Remote Control, 53:12 (1992), 1905–1913 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1229404'>1229404</ext-link>
[9] V. N. Novosel'tsev, Fundamental Research, 2008, no. 6, 71–73 (in Russ.)
[10] M. A. Paltsev, I. M. Kvetnoy, V. O. Polyakova, T. V. Kvetnaiya, A. V. Trofimov, “Neuroimmunoendocrine mechanisms of aging”, Advances in Gerontology, 1:1 (2011), 28–38 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S2079057011010103'>10.1134/S2079057011010103</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2815976'>2815976</ext-link>
[11] V. Kh. Khavinson, V. N. Anisimov, “35-year experience in research of peptide regulation of aging”, Advances in Gerontology, 22:1 (2009), 11–23 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10517-009-0650-8'>10.1007/s10517-009-0650-8</ext-link>
[12] V. A. Sakovich, M. V. Gogoleva, V. I. Red'ko, A. T. Gubin, “Radiation risk load model and its modifications”, Issues of Risk Analysis, 1:1 (2004), 76–98 (in Russ.)
[13] E. A. Mashintsov, Iakovlev A. E., Proceedings of Tula State University. Series: Mathematics, Mechanics, Information, 10:4 (2004), 138–174 (in Russ.)
[14] A. E. Iakovlev, Mathematical modeling of population health by using geoinformatics technologies, PhD Thesis (Technical Sciences), Tula, 2005, 125 pp. (in Russ.)
[15] N. V. Zaitseva, P. V. Trusov, P. Z. Shur, D. A. Kiryanov, V. M. Chigvintsev, M. Yu. Tsinker, “Mathematical approaches to the health risk assessment of heterogeneous environmental factors based on evolutionary models”, Health Risk Analysis, 2013, no. 1, 3–11 (in Russ.) <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1284.03170'>1284.03170</ext-link>
[16] P. V. Trusov, N. V. Zaitseva, D. A. Kiryanov, M. R. Kamaltdinov, M. Ju. Cinker, V. M. Chigvintsev, D. V. Lanin, “A Mathematical Model for Evolution of Human Functional Disorders Influenced by Environment Factors”, Mathematical Biology and Bioinformatics, 7:2 (2012), 589–610 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2012.7.589'>10.17537/2012.7.589</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2963820'>2963820</ext-link>
[17] N. V. Zaitseva, D. A. Kiryanov, D. V. Lanin, V. M. Chigvintsev, “A mathematical model of the immune and neuroendocrine systems mutual regulation under the technogenic chemical factors impact”, Computational and Mathematical Methods in Medicine, 2014 (2014), 492489 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2014/492489'>10.1155/2014/492489</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3206849'>3206849</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1307.92102'>1307.92102</ext-link>
[18] C. Feinle, P. Kunz, P. Boesiger, M. Fried, W. Schwizer, “Scintigraphic validation of a magnetic resonance imaging method to study gastric emptying of a solid meal in human”, Gut, 44 (1999), 106–111 <ext-link ext-link-type='doi' href='https://doi.org/10.1136/gut.44.1.106'>10.1136/gut.44.1.106</ext-link>
[19] L. Marciani, P. A. Gowland, R. C. Spiller, P. Manoj, J. R. Moore, P. Young, S. Al-Sahab, D. Bush, J. Wright, A. J. Fillery-Travis, “Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans”, The journal of nutrition, 130 (2000), 122–127 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/jn/130.1.122'>10.1093/jn/130.1.122</ext-link>
[20] K. L. Jones, D. G. O'Donovan, M. Horowitz, A. Russo, Y. Lei, T. Hausken, “Effects of posture on gastric emptying, transpyloric flow, and hunger after a glucose drink in healthy humans”, Dig. Dis. Sci., 51 (2006), 1331–1338 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10620-005- 9010-3'>10.1007/s10620-005- 9010-3</ext-link>
[21] H. P. Simonian, A. H. Maurer, L. C. Knight, S. Kantor, D. Kontos, V. Megalooikonomou, R. S. Fisher, H. P. Parkman, “Simultaneous assessment of gastric accommodation and emptying: studies with liquid and solid meals”, J. Nucl. Med., 45 (2004), 1155–1160
[22] D. Liao, H. Gregersen, T. Hausken, O. H. Gilja, M. Mundt, G. Kassab, “Analysis of surface geometry of the human stomach using real-time 3-D ultrasonography in vivo”, Neurogastroenterol Motil, 16 (2004), 315–324 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365- 2982.2004.00522.x'>10.1111/j.1365- 2982.2004.00522.x</ext-link>
[23] J. B. Frokjaer, S. D. Andersen, A. M. Drewes, H. Gregersen, “Ultrasound-determined geometric and biomechanical properties of the human duodenum”, Dig. Dis. Sci., 51 (2006), 1662–1669 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10620-005-9015-y'>10.1007/s10620-005-9015-y</ext-link>
[24] N. V. Karasikov, A. G. Mikheev, L. E. Mishulin, B. V. Rakitin, M. M. Trifonov, S. I. Schookin, “Gastrointensinal manometry with medical device “Gastroscan-D””, Biomedical Radio Electronics, 2011, no. 10, 79–83 (in Russ.)
[25] S. A. Chernyakevich, “Motor function of upper sections of digestive system in norm and pathology”, Russian Journal of Gastroenterology, Hepatology, Coloproctology, 1998, no. 2, 33–39 (in Russ.)
[26] H. U. De Schepper, F. Cremonini, D. Chitkara, M. Camilleri, “Assessment of gastric accommodation: overview and evaluation of current methods”, Neurogastroenterol. Motil, 16 (2004), 275–285 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2982.2004.00497.x'>10.1111/j.1365-2982.2004.00497.x</ext-link>
[27] E. A. Kornienko, M. A. Dmitrienko, Iu. A. Nikulin, E. I. Filiushkina, I. P. Filiushkin, Using Medical Equipment in Gastroenterological Diagnostics, Handbook, Sankt-Petersburg, 2006, 103 pp. (in Russ.)
[28] V. A. Stupin, G. O. Smirnova, M. V. Baglaenko, S. V. Siluyanov, D. B. Zakirov, “Peripheral electrogastroenterography in the diagnosis of disorders of motor-evacuation function of the gastrointestinal tract”, The Practitioner, 2005, no. 2, 60–62 (in Russ.)
[29] G. O. Smirnova, S. V. Siluyanov, Peripheral Electrogastroenterography in Clinical Practice, ed. V.A. Stupin, M., 2009, 20 pp. (in Russ.)
[30] S. I. Rapoport, A. A. Lakshin, B. V. Rakitin, M. M. Trifonov, pH metry of the esophagus and stomach in the upper digestive tract diseases, ed. F.I. Komarov, Medpraktika-M, M., 2005, 208 pp. (in Russ.)
[31] V. N. Sotnikov, T. K. Dubinskaia, A. V. Volova, G. A. Iakovlev, The Role of Endoscopic pH metry in Estimation of the Acid-forming Function of the Stomach, Physician Handbook, M., 2005, 35 pp. (in Russ.)
[32] A. G. Oomen, C. J.M. Rompelberg, M. A. Bruil, C. J.G. Dobbe, D. P.K. H. Pereboom, A. J.A. M. Sips, “Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants”, Archives of environmental contamination and toxicology, 44 (2003), 281–287 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00244-002-1278-0'>10.1007/s00244-002-1278-0</ext-link>
[33] J. G. Arnold, A. Dubois, “In vitro studies of intragastric digestion”, Digestive disease and sciences, 28 (1983), 737–741 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01312565'>10.1007/BF01312565</ext-link>
[34] E. Hedren, V. Diaz, U. Svanberg, “Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method”, European Journal of clinical Nutrition, 56 (2002), 425–430 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/sj.ejcn.1601329'>10.1038/sj.ejcn.1601329</ext-link>
[35] E. Hedren, V. Diaz, U. Svanberg, “Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method”, European Journal of clinical Nutrition, 56 (2002), 425–430 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/sj.ejcn.1601329'>10.1038/sj.ejcn.1601329</ext-link>
[36] A. M. Nagah, C. J. Seal, “In vitro procedure to predict apparent antioxidant release from wholegrain foods measured using three different analytical methods”, Journal of the science of food and agriculture, 85 (2005), 1177–1185 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jsfa.2106'>10.1002/jsfa.2106</ext-link>
[37] K. R. Walsh, Y. C. Zhang, Y. Vodovitz, S. J. Schwartz, M. L. Failla, “Stability and bioaccessibility of isoflavones from soy bread during in vitro digestion”, Journal of agricultural and food chemistry, 51 (2003), 4603–4609 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jf0342627'>10.1021/jf0342627</ext-link>
[38] K. Molly, M. V. Woestyne, W. Verstraete, “Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem”, Appl. Microbiol. Biotechnol, 39 (1993), 254–258 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00228615'>10.1007/BF00228615</ext-link>
[39] J. M. Cardot, E. Beyssac, M. Alric, “In vitro-in vivo correlation: importance of dissolution in IVIVC”, Dissolution technologies, 14 (2007), 15–19 <ext-link ext-link-type='doi' href='https://doi.org/10.14227/DT140107P15'>10.14227/DT140107P15</ext-link>
[40] F. Kong, R. P. Singh, “Modes of disintegration of solid foods in simulated gastric environment”, Food biophysics, 4 (2009), 180–190 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11483-009-9116-9'>10.1007/s11483-009-9116-9</ext-link>
[41] F. Kong, R. P. Singh, “Solid loss of carrots during simulated gastric digestion”, Food biophysics, 6 (2011), 84–93 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11483-010-9178-8'>10.1007/s11483-010-9178-8</ext-link>
[42] K. Schulze, “Imaging and modeling of digestion in the stomach and the duodenum”, Neurogastroenterol. Motil, 18 (2006), 172–183 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365- 2982.2006.00759.x'>10.1111/j.1365- 2982.2006.00759.x</ext-link>
[43] B. A. Samura, A. V. Dralkin, Pharmacokinetika, Khar'kov, 1996, 286 pp. (in Russ.)
[44] V. H. Colov'ev, A. A. Firsov, V. A. Filov, Pharmacokinetika, M., 1980, 432 pp. (in Russ.)
[45] Ferrua M.J, R. P. Singh, “Modeling the fluid dynamics in a human stomach to gain insight of food digestion”, Journal of food science, 75 (2010), 151–162 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1750-3841.2010.01748.x'>10.1111/j.1750-3841.2010.01748.x</ext-link>
[46] S. Singh, R. P. Singh, “Gastric Digestion of Foods: Mathematical Modeling of Flow Field in a Human Stomach”, Food Engineering Interfaces, 2011, 99–117
[47] Z. Xue, M. J. Ferrua, R. P. Singh, “Computational fluid dynamics modeling of granular flow in human stomach”, Alimentos hoy, 21 (2012), 3–14
[48] S. Dillard, S. Krishnan, H. S. Udaykumar, “Mechanics of flow and mixing at antroduodenal junction”, World J. Gastroenterol, 13 (2007), 1365–1371 <ext-link ext-link-type='doi' href='https://doi.org/10.3748/wjg.v13.i9.1365'>10.3748/wjg.v13.i9.1365</ext-link>
[49] H. Kozu, I. Kobayashi, M. Nakajima, K. Uemura, S. Sato, S. Ichikawa, “Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD”, Food Biophysics, 5 (2010), 330–336 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11483-010-9183-y'>10.1007/s11483-010-9183-y</ext-link>
[50] F. Kong, R. P. Singh, “Disintegration of solid foods in human stomach”, Journal of food science, 73 (2008), 67–80 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1750-3841.2008.00766.x'>10.1111/j.1750-3841.2008.00766.x</ext-link>
[51] A. Pal, K. Indireshkumar, W. Schwizer, B. Abrahamsson, M. Fried, J. G. Brasseur, “Gastric flow and mixing studied using computer simulation”, Proc. R. Soc. Lond. B, 271 (2004), 2587–2594 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rspb.2004.2886'>10.1098/rspb.2004.2886</ext-link>
[52] A. Pal, Brasseur J.G, B. Abrahamsson, “A stomach road or “Magenstrasse” for gastric emptying”, Journal of Biomechanics, 40 (2007), 1202–1210 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2006.06.006'>10.1016/j.jbiomech.2006.06.006</ext-link>
[53] P. V. Trusov, N. V. Zaytseva, M. R. Kamaltdinov, “Simulation of digestion processes in consideration of functional disorders in a human organism: conceptual and mathematical formulations, model structure”, Russian Journal of Biomechanics, 17:4 (2013), 60–74 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link>
[54] R. I. Nigmatulin, Dynamics of Multiphase Media, v. 1, Hemisphere, Washington, 1991
[55] L. Schiller, Z. Naumann, “A drag coefficient correlation”, Ver. Deutsh. Ing., 77 (1935), 318
[56] G. Barequet, D. Shapiro, A. Tal, “Multilevel sensitive reconstruction of polyhedral surfaces from parallel slices”, The Visual Computer, 16 (2000), 116–133 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s003710050201'>10.1007/s003710050201</ext-link>
[57] S. Lobregt, A. Viergever, “A discrete dynamic contour model”, IEEE transactions on medical imaging, 14 (1995), 12–24 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/42.370398'>10.1109/42.370398</ext-link>
[58] A. Nedzvezd, P. Lukashevich, S. Ablameyko, T. M. Deserno, Lehmann, “Reconstruction of 3D medical object shapes from 2D cross-sections”, Pattern recognition and information processing: proceedings of the tenth international conference, eds. Krasnoproshin V., S. Ablameyko, R. Sadykhov, 2009, 247–250
[59] R. N. Rohling, 3D Freehand Ultrasound: Reconstruction and Spatial Compounding, PhD Dissertation, University of Cambridge, 1998, 158 pp.
[60] G. M. Treece, Volume Measurement and Surface Visualisation in Sequential Freehand 3d Ultrasound, PhD Dissertation, University of Cambridge, 2000, 172 pp.
[61] Ansys fluent 12.0. Theory guide, 2009