Modeling of human breath: conceptual and mathematical statements
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t38-t53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the main aspects of the development of a mathematical model of the human respiratory system taking into account the effects of environmental factors. The proposed model is a submodel of “meso-level” multilayered mathematical model of the evolution of functional disorders of the human body. The conceptual and mathematical formulations of the problem are discussed. The breathing is considered as a set of synchronized processes of gas dynamics, deformation of the porous medium and diffusion. The results of the calculation of the air flow characteristics during quiet breathing and forced breath in the first four generations of large airways were obtained by using software ANSYS Fluent. Further development of the model involves the joint problem solving of changes in lung configuration and in gasdynamic processes in the human airway.
@article{MBB_2023_18_a2,
     author = {P. V. Trusov and N. V. Zaitseva and M. Yu. Cinker},
     title = {Modeling of human breath: conceptual and mathematical statements},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t38--t53},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_a2/}
}
TY  - JOUR
AU  - P. V. Trusov
AU  - N. V. Zaitseva
AU  - M. Yu. Cinker
TI  - Modeling of human breath: conceptual and mathematical statements
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - t38
EP  - t53
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_a2/
LA  - en
ID  - MBB_2023_18_a2
ER  - 
%0 Journal Article
%A P. V. Trusov
%A N. V. Zaitseva
%A M. Yu. Cinker
%T Modeling of human breath: conceptual and mathematical statements
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P t38-t53
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_a2/
%G en
%F MBB_2023_18_a2
P. V. Trusov; N. V. Zaitseva; M. Yu. Cinker. Modeling of human breath: conceptual and mathematical statements. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t38-t53. http://geodesic.mathdoc.fr/item/MBB_2023_18_a2/

[1] B. S. Shkliar, Diagnostics of Internal Diseases, Vysshaya Shkola, Kiev, 1972, 516 pp. (in Russ.)

[2] A. L. Grebenev, Propaedeutics of Internal Diseases, Meditsina, M., 2001, 592 pp. (in Russ.)

[3] P. V. Trusov, N. V. Zaitseva, D. A. Kiryanov, M. R. Kamaltdinov, M. Ju. Cinker, V. M. Chigvintsev, D. V. Lanin, “A Mathematical model for evolution of human functional disorders influenced by environment factors”, Mathematical Biology & Bioinformatics, 7:2 (2012), 589–610 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2012.7.589'>10.17537/2012.7.589</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link>

[4] N. V. Zaitseva, P. V. Trusov, P. Z. Shur, D. A. Kiryanov, V. M. Chigvintsev, M. Yu. Tsinker, “Methodical approaches to health risk assessment of heterogeneous environmental factors based on evolutionary models”, Health Risk Analysis, 2013, no. 1, 15–23 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2013.1.02.eng'>10.21668/health.risk/2013.1.02.eng</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link>

[5] M. Yu. Tsinker, Biomechanics 2014, Proceedings of the XI All-Russia Conference with International Participation and Workshop-School for Young Scientists (Perm', 1-4 December 2014), v. 1, Perm' National Research Polytechnic University Press, Perm', 2014, 290–292 (in Russ.)

[6] M. Yu. Tsinker, “A mathematical model of the human respiratory system”, Biomechanics 2014, Proceedings of the XI All-Russia Conference with International Participation and Workshop-School for Young Scientists (Perm', 1-4 December 2014), Perm' National Research Polytechnic University Press, Perm', 2014, 255–258 (in Russ.)

[7] G. G. Onishchenko, N. V. Zaitseva, M. A. Zemlyanova, Hygienic indication of health effects at environment exposure of chemical factors, ed. Onishchenko G.G., Knyzny Format, Perm', 2011, 532 pp.

[8] N. V. Zaitseva, O. Yu. Ustinova, A. I. Aminova, Hygienic aspects of health disorders in children exposed to chemical environmental, ed. Zaitseva N.V., Knyzny Format, Perm', 2011, 489 pp.

[9] G. A. Lyubimov, “Models of Human Lungs and Investigation of the Respiration Mechanics on the Basis of these Models”, Proceedings of the Steklov Institute of Mathematics, 223 (1998), 196–205 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1172.76387'>1172.76387</ext-link>

[10] A. Ben-Tal, “Simplified models for gas exchange in the human lungs”, Journal of Theoretical Biology, 238 (2006), 474–495 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtbi.2005.06.005'>10.1016/j.jtbi.2005.06.005</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1445.92083'>1445.92083</ext-link>

[11] H. Benallal, K. C. Beck, B. D. Johnson, T. Busso, “Evaluation of cardiac output from a tidally ventilated homogeneous lung model”, Eur. J. Appl. Physiol., 95 (2005), 153–162 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00421-005-1376-6'>10.1007/s00421-005-1376-6</ext-link>

[12] F. Kuwahara, Y. Sano, J. Liu, A. Nakayama, “A Porous Media Approach for Bifurcating Flow and Mass Transfer in a Human Lung”, J. Heat Transfer, 131:10 (2009) <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.3180699'>10.1115/1.3180699</ext-link>

[13] A. H. Reis, A. F. Miguel, M. Aydin, “Constructal theory of flow architecture of the lungs”, Journal of Medical Physics, 31 (2004), 1135–1140 <ext-link ext-link-type='doi' href='https://doi.org/10.1118/1.1705443'>10.1118/1.1705443</ext-link>

[14] I. V. Kirillova, A. A. Gramakova, Iu. A. Belova, N. O. Chelnokova, Computer Diagnostics Methods in Biology and Medicine - 2009, Proceeding of Annual All-Russia Scientific Workshop-School, ed. Usanov D.A., National Research Saratov State University Press, Saratov, 2009 (in Russ.)

[15] V. M. Fomin, V. N. Vetlutsky, V. L. Ganimedov, M. I. Muchnaya, V. N. Shepelenko, M. N. Melnikov, A. A. Savina, “Air flow in the human nasal cavity”, Journal of Applied Mechanics and Technical Physics, 51:2 (2010), 233–240 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10808-010-0033-y'>10.1007/s10808-010-0033-y</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1272.76325'>1272.76325</ext-link>

[16] V. M. Fomin, V. L. Ganimedov, M. N. Mel'nikov, M. I. Muchnaya, A. S. Sadovskii, V. I. Shepelenko, “Numerical modeling of the air flow in the human nasal cavity with simulation of application of the clinical method of active anterior rhinomanometry”, Journal of Applied Mechanics and Technical Physics, 53:1 (2012), 49–55 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0021894412010075'>10.1134/S0021894412010075</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1298.76244'>1298.76244</ext-link>

[17] V. L. Ganimedov, M. I. Muchnaya, A. S. Sadovskii, “Air flow in the human nasal cavity. Results of mathematical modelling”, Russian Journal of Biomechanics, 19:1 (2015), 31–44

[18] A. R. Lambert, Regional deposition of particles in an image-based airway model: CFD simulation and left-right lung ventilation asymmetry, MS (Master of sciences) thesis, University of Iowa, Iowa, 2010, 68 pp. <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1211.14045'>1211.14045</ext-link>

[19] W. A. Wall, T. Rabczuk, “Fluid structure interaction in lower airways of CT-based lung geometries”, Int. J. Num. Methods in fluids, 57 (2008), 653–675 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/fld.1763'>10.1002/fld.1763</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2419895'>2419895</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1143.76066'>1143.76066</ext-link>

[20] Kleinstreuer. C., Z. Zhanga, Z. Lia, W. L. Roberts, C. Rojasc, “A new methodology for targeting drug-aerosols in the human respiratory system”, International Journal of Heat and Mass Transfer, 51 (2008), 5578–5589 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.052'>10.1016/j.ijheatmasstransfer.2008.04.052</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1229.92050'>1229.92050</ext-link>

[21] J. Choi, Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs, PhD Dissertation, University of Iowa, Iowa, 2011, 259 pp.

[22] Weibel E.R., Morphometry of the Human Lung, Springer Verlag, Berlin–Gottingen–Heidelberg, 1963

[23] Kaletina N.I. (ed.), Toxicological Chemistry: Toxicant Metabolism and Analysis, Student's manual, GEOTAR-Media, M., 2008, 1016 pp. (in Russ.)

[24] A. I. Lurie, Theory of Elasticity, Springer, 2005, 1050 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-3-540-26455-2'>10.1007/978-3-540-26455-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1124407'>1124407</ext-link>

[25] West J.B., Respiratory Physiology The Essentials, Lippincott Williams and Wilkins, USA, 1985

[26] R. D. Sinel'nikov, Ia. R. Sinel'nikov, Atlas of Human Anatomy, Mir Publisher, M., 1996, 264 pp. (in Russ.)

[27] E. I. Borzyak, L. I. Volkova, E. A. Dobrovol'skaya, V. S. Revazov, Human Anatomy, v. 1, ed. Sapin M. R., Medicine, M., 1993, 544 pp. (in Russ.)

[28] V. G. Kukes, V. F. Marinin, Clinical Diagnostic Methods (inspection, palpation, percussion), Student's Manual, GEOTAR-Media, M., 2006, 720 pp. (in Russ.)

[29] Yu. L. Zolotko, Topographic Atlas of Human Anatomy, Medicine, M., 1967, 272 pp. (in Russ.)

[30] Morgan G.E., Michael M.S., Clinical Anesthesiology, v. 2, Appleton & Lange A Simon & Schuster Company, 1996, 747 pp.