Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_a1, author = {P. V. Trusov and N. V. Zaitseva and V. M. Chigvintsev and D. V. Lanin}, title = {Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t17--t37}, publisher = {mathdoc}, volume = {18}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_a1/} }
TY - JOUR AU - P. V. Trusov AU - N. V. Zaitseva AU - V. M. Chigvintsev AU - D. V. Lanin TI - Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - t17 EP - t37 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_a1/ LA - en ID - MBB_2023_18_a1 ER -
%0 Journal Article %A P. V. Trusov %A N. V. Zaitseva %A V. M. Chigvintsev %A D. V. Lanin %T Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P t17-t37 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_a1/ %G en %F MBB_2023_18_a1
P. V. Trusov; N. V. Zaitseva; V. M. Chigvintsev; D. V. Lanin. Regulation of organism's antiviral immune response: mathematical model, qualitative analysis, results. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t17-t37. http://geodesic.mathdoc.fr/item/MBB_2023_18_a1/
[1] C. J. Heijnen, “Receptor regulation in neuroendocrine-immune communication: current knowledge and future perspectives”, Brain, behavior, and immunity, 21 (2007), 1–8 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bbi.2006.08.008'>10.1016/j.bbi.2006.08.008</ext-link>
[2] T. W. Pace, L. T. Negi, D. D. Adame, S. P. Cole, T. I. Sivilli, T. D. Brown, M. J. Issa, C. L. Raison, “Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress”, Psychoneuroendocrinology, 34 (2009), 87–98 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.psyneuen.2008.08.011'>10.1016/j.psyneuen.2008.08.011</ext-link>
[3] N. T. Ashley, G. E. Demas, “Neuroendocrine-immune circuits, phenotypes, and interactions”, Hormones and Behavior, 87 (2017), 25–34 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.yhbeh.2016.10.004'>10.1016/j.yhbeh.2016.10.004</ext-link>
[4] E. C. Suarez, J. S. Sundy, A. Erkanli, “Depressogenic vulnerability and gender-specific patterns of neuro-immune dysregulation: What the ratio of cortisol to C-reactive protein can tell us about loss of normal regulatory control”, Brain, Behavior, and Immunity, 44 (2015), 137–147 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bbi.2014.09.008'>10.1016/j.bbi.2014.09.008</ext-link>
[5] D. V. Lanin, N. V. Zaitseva, O. V. Dolgikh, Successes of modern biology, 2 (2011), 122–134 (in Russ.)
[6] M. Bellavance, S. Rivest, “The neuroendocrine control of the innate immune system in health and brain diseases”, Immunological Reviews, 248 (2012), 36–55 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1600-065X.2012.01129.x'>10.1111/j.1600-065X.2012.01129.x</ext-link>
[7] C. R. Chapman, R. P. Tuckett, C. W. Song, “Pain and Stress in a Systems Perspective: Reciprocal Neural, Endocrine, and Immune Interactions”, Journal of Pain, 9 (2008), 122–145 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jpain.2007.09.006'>10.1016/j.jpain.2007.09.006</ext-link>
[8] S. Miyake, “Mind over cytokines: Crosstalk and regulation between the neuroendocrine and immune systems”, Clinical and Experimental Neuroimmunology, 3:1 (2012), 1–15 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1759-1961.2011.00023.x'>10.1111/j.1759-1961.2011.00023.x</ext-link>
[9] A. B. Poletaev, S. G. Morozov, I. E. Kovalev, Regulatory metasystem (immunoneurococcal regulation of homeostasis, M., 2002, 166 pp. (in Russ.)
[10] World health statistics 2016: monitoring health for the SDGs, sustainable development goals, World Health Organization, 2016, 121 pp.
[11] L. A. Stepanenko, S. V. Il'ina, E. D. Savilov, Bulletin of the East-Siberian Scientific Center of the Siberian Branch of the Russian Academy of Medical Sciences, S3 (2007), 66–68 (in Russ.)
[12] Documents, , Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2018 (accessed 20.11.2018) <ext-link ext-link-type='uri' href='http://www.rospotrebnadzor.ru/en/documents/'>http://www.rospotrebnadzor.ru/en/documents/</ext-link>
[13] E. D. Savilov, M. V. Mal'tsev, Journal of Microbiology, Epidemiology and Immunobiology, 1 (2007), 70–71 (in Russ.)
[14] E. E. Voronin, I. B. Latysheva, “VICh-infektsiia v Rossiiskoi Federatsii”, Ural Medical Journal, 142 (2016), 6–8 (in Russ.)
[15] L. A. Stepanenko, M. F. Savchenkov, S. V. Il'ina, E. V. Anganova, E. D. Savilov, Hygiene and Sanitation, 95 (2016), 1129–1133 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.18821/0016-9900-2016-95-12-1129-1133'>10.18821/0016-9900-2016-95-12-1129-1133</ext-link>
[16] E. D. Savilov, E. V. Anganova, S. V. Il'ina, L. A. Stepanenko, Hygiene and Sanitation, 95 (2016), 507–512 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.18821/0016-9900-2016-95-6-507-512'>10.18821/0016-9900-2016-95-6-507-512</ext-link>
[17] E. D. Savilov, S. V. Il'ina, Epidemiology and vaccine prevention, 62 (2012), 58–63 (in Russ.)
[18] N. V. Zaitseva, D. V. Lanin, V. A. Chereshnev, Immune and neuroendocrine regulation under the influence of chemical factors of various origins, Perm', 2016, 236 pp. (in Russ.)
[19] D. V. Lanin, Health Risk Analysis, v. 1, 2013, 73–81 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2013.1.10'>10.21668/health.risk/2013.1.10</ext-link>
[20] N. V. Zaitseva, D. A. Kiryanov, D. V. Lanin, V. M. Chigvintsev, “A mathematical model of the immune and neuroendocrine systems mutual regulation under the technogenic chemical factors impact”, Computational and Mathematical Methods in Medicine, 2014 (2014) <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2014/492489'>10.1155/2014/492489</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3206849'>3206849</ext-link>
[21] N. V. Zaitseva, P. V. Trusov, P. Z. Shur, D. A. Kir'ianov, V. M. Chigvintsev, M. Iu. Tsinker, Health Risk Analysis, v. 1, 2013, 3–11 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2013.1.02'>10.21668/health.risk/2013.1.02</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1284.03170'>1284.03170</ext-link>
[22] N. V. Zaitseva, P. Z. Shur, I. V. Mai, D. A. Kir'ianov, Public health and habitat, 10 (2011), 6–9 (in Russ.)
[23] D. V. Lanin, T. M. Lebedeva, Hygiene and Sanitation, 95 (2016), 94–96 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.18821/0016-9900-2016-95-1-94-96'>10.18821/0016-9900-2016-95-1-94-96</ext-link>
[24] P. Zabel, H. J. Horst, C. Kreiker, M. Schlaak, “Circadian rhythm of interleukin-1 production of monocytes and the influence of endogenous and exogenous glucocorticoids in man”, Klinische Wochenschrift, 68 (1990), 1217–1221 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF01796513'>10.1007/BF01796513</ext-link>
[25] N. Bairagi, S. Chatterjee, J. Chattopadhyay, “Variability in the secretion of corticotropin releasing hormone, adrenocorticotropic hormone and cortisol and understandability of the hypothalamic-pituitary-adrenal axis dynamics a mathematical study based on clinical evidence”, Mathematical Medicine and Biology, 25 (2008), 37–63 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/imammb/dqn003'>10.1093/imammb/dqn003</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1146.92008'>1146.92008</ext-link>
[26] Y. Kerdiles, S. Ugolini, E. Vivier, “T cell regulation of natural killer cells”, The Journal of Experimental Medicine, 210 (2013), 1065–1068 <ext-link ext-link-type='doi' href='https://doi.org/10.1084/jem.20130960'>10.1084/jem.20130960</ext-link>
[27] M. E. Andrew, A. M. Churilla, T. R. Malek, V. L. Braciale, T. J. Braciale, “Activation of virus specific CTL clones: antigen-dependent regulation of interleukin 2 receptor expression”, J. Immunol., 134:2 (1985), 920–925 <ext-link ext-link-type='doi' href='https://doi.org/10.4049/jimmunol.134.2.920'>10.4049/jimmunol.134.2.920</ext-link>
[28] A. Muraguchi, J. H. Kehrl, D. L. Longo, D. J. Volkman, K. A. Smith, A. S. Fauci, “Interleukin 2 receptors on human B cells. Implications for the role of interleukin 2 in human B cell function”, The Journal of Experimental Medicine, 161 (1985), 181–197 <ext-link ext-link-type='doi' href='https://doi.org/10.1084/jem.161.1.181'>10.1084/jem.161.1.181</ext-link>
[29] E. Haus, M. H. Smolensky, “Biologic rhythms in the immune system”, Chronobiology International, 16 (1999), 581–622 <ext-link ext-link-type='doi' href='https://doi.org/10.3109/07420529908998730'>10.3109/07420529908998730</ext-link>
[30] G. E. Demas, S. A. Adamo, S. S. French, “Neuroendocrine-immune crosstalk in vertebrates and invertebrates: Implications for host defence”, Functional Ecology, 25 (2011), 29–39 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1365-2435.2010.01738.x'>10.1111/j.1365-2435.2010.01738.x</ext-link>
[31] G. I. Marchuk, R. V. Petrov, A. A. Romanyukha, G. A. Bocharov, “Mathematical model of antiviral immune response. I. Data analysis, generalized picture construction and parameters evaluation for hepatitis B”, Journal of Theoretical Biology, 151 (1991), 1–40 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0022-5193(05)80142-0'>10.1016/S0022-5193(05)80142-0</ext-link>
[32] I. Julkunen, K. Melen, M. Nyqvist, J. Pirhonen, T. Sareneva, S. Matikainen, “Inflammatory responses in influenza A virus infection”, Vaccine, 19 (2000), S32–S37 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0264-410X(00)00275-9'>10.1016/S0264-410X(00)00275-9</ext-link>
[33] G. A. Bocharov, A. A. Romanyukha, “Mathematical model of antiviral immune response. III. Influenza A virus infection”, Journal of Theoretical Biology, 167:4 (1994), 323–360 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jtbi.1994.1074'>10.1006/jtbi.1994.1074</ext-link>
[34] K. P. Keenan, J. W. Combs, E. M. McDowell, “Regeneration of hamster tracheal epithelium after mechanical injury. III. Large and small lesions: Comparative stathmokinetic and single pulse and continuous thymidine labeling autoradiographic studies”, Virchows Archiv B Cell Pathology Including Molecular Pathology, 41:1 (1983), 231–252 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF02890283'>10.1007/BF02890283</ext-link>
[35] Joklik W. K., Interferons, ed. B.N. Fields, Raven Press, New York, 1985, 281–307
[36] A. S. Perelson, R. M. Ribeiro, “Modeling the within-host dynamics of HIV infection”, BMC Biology, 11 (2013), 96 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1741-7007-11-96'>10.1186/1741-7007-11-96</ext-link>
[37] A. M. Smith, A. S. Perelson, “Influenza A virus infection kinetics: Quantitative data and models”, WIREs: Systems Biology and Medicine, 3:4 (2011), 429–445 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/wsbm.129'>10.1002/wsbm.129</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2713822'>2713822</ext-link>
[38] F. Vinther, M. Andersen, J. T. Ottesen, “The minimal model of the hypothalamic pituitary-adrenal axis”, Journal of Mathematical Biology, 63:4 (2011), 663–690 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00285-010-0384-2'>10.1007/s00285-010-0384-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2836024'>2836024</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1311.92075'>1311.92075</ext-link>
[39] V. M. Zhdanov, A. G. Bukrinskaia, Reproduction of myxoviruses (influenza viruses and related viruses), M., 1969, 280 pp. (in Russ.)
[40] T. Ronni, T. Sareneva, J. Pirhonen, I. Julkunen, “Activation of IFN-alpha, IFN-gamma, MxA, and IFN regulatory factor 1 genes in influenza A virus-infected human peripheral blood mononuclear cells”, Journal of Immunology, 154:6 (1995), 2764–2774 <ext-link ext-link-type='doi' href='https://doi.org/10.4049/jimmunol.154.6.2764'>10.4049/jimmunol.154.6.2764</ext-link>
[41] T. Sareneva, S. Matikainen, M. Kurimoto, I. Julkunen, “Influenza A virus-induced IFN alpha/beta and IL-18 synergistically enhance IFN-gamma gene expression in human T cells”, Journal of Immunology, 160:12 (1998), 6032–6038 <ext-link ext-link-type='doi' href='https://doi.org/10.4049/jimmunol.160.12.6032'>10.4049/jimmunol.160.12.6032</ext-link>
[42] G. I. Marchuk, E. P. Berbentsova, Acute pneumonia. Immunology, assessment of severity, clinic, treatment, M., 1989, 304 pp. (in Russ.)
[43] F. G. Hayden, R. Fritz, M. C. Lobo, W. Alvord, W. Strober, S. E. Straus, “Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense”, Journal of Clinical Investigation, 101:3 (1998), 643–649 <ext-link ext-link-type='doi' href='https://doi.org/10.1172/JCI1355'>10.1172/JCI1355</ext-link>
[44] C. Wohlfartt, “Neutralization of Adenoviruses: Kinetics, Stoichiometry, and Mechanisms”, J. Immunol., 62:7 (1988), 2321–2328
[45] Y. Bergeron, N. Ouellet, A. Deslauriers, M. Simard, M. Olivier, M. Bergeron, “Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice”, Infect. Immun., 66:3 (1998), 912–922 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/IAI.66.3.912-922.1998'>10.1128/IAI.66.3.912-922.1998</ext-link>
[46] C. Gloff, R. Wills, “Pharmacokinetics and Metabolism of Therapeutic Cytokines”, Protein Pharmacokinetics and Metabolism, eds. B. Ferraiolo, M. Mohler, C. Gloff, Plenum Press, New York, 1992, 127–150 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-1-4899-2329-5_5'>10.1007/978-1-4899-2329-5_5</ext-link>
[47] A. Tulp, D. Verwoerd, B. Dobberstein, H. L. Ploegh, J. Pieters, “Isolation and characterization of the intracellular MHC class II compartment”, Nature, 369:6476 (1994), 120–126 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/369120a0'>10.1038/369120a0</ext-link>
[48] S. I. Tamura, T. Iwasaki, A. H. Thompson, H. Asanuma, Z. Chen, Y. Suzuki, C. Aizawa, T. Kurata, “Antibody-forming cells in the nasal-associated lymphoid tissue during primary influenza virus infection”, Journal of General Virology, 79:2 (1998), 291–299 <ext-link ext-link-type='doi' href='https://doi.org/10.1099/0022-1317-79-2-291'>10.1099/0022-1317-79-2-291</ext-link>
[49] P. Felig, L. Frohman, Endocrinology and metabolism, McGraw-Hill, New York, 2001, 1562 pp.
[50] B. J. Carroll, F. Cassidy, D. Naftolowitz, N. E. Tatham, W. H. Wilson, A. Iranmanesh, P. Y. Liu, J. D. Veldhuis, “Pathophysiology of hypercortisolism in depression”, Acta Psychiatrica Scandinavica, 115 (2007), 90–103 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1600- 0447.2007.00967.x'>10.1111/j.1600- 0447.2007.00967.x</ext-link>
[51] R. A. Yetter, S. Lehrer, R. Ramphal, P. A. Small Jr., “Outcome of influenza infection: effect of site of initial infection and heterotypic immunity”, Infect. Immun., 29 (1980), 654–662 <ext-link ext-link-type='doi' href='https://doi.org/10.1128/iai.29.2.654-662.1980'>10.1128/iai.29.2.654-662.1980</ext-link>
[52] B. Asquith, C. R. Bangham, “An introduction to lymphocyte and viral dynamics: the power and limitations of mathematical analysis”, Proc. Biol. Sci., 270 (2003), 1651–1657 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rspb.2003.2386'>10.1098/rspb.2003.2386</ext-link>