Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_a0, author = {P. V. Trusov and N. V. Zaitseva and M. Yu. Cinker and A. V. Nekrasova}, title = {Mathematical model of airflow and solid particles transport in the human nasal cavity}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t1--t16}, publisher = {mathdoc}, volume = {18}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_a0/} }
TY - JOUR AU - P. V. Trusov AU - N. V. Zaitseva AU - M. Yu. Cinker AU - A. V. Nekrasova TI - Mathematical model of airflow and solid particles transport in the human nasal cavity JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - t1 EP - t16 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_a0/ LA - en ID - MBB_2023_18_a0 ER -
%0 Journal Article %A P. V. Trusov %A N. V. Zaitseva %A M. Yu. Cinker %A A. V. Nekrasova %T Mathematical model of airflow and solid particles transport in the human nasal cavity %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P t1-t16 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_a0/ %G en %F MBB_2023_18_a0
P. V. Trusov; N. V. Zaitseva; M. Yu. Cinker; A. V. Nekrasova. Mathematical model of airflow and solid particles transport in the human nasal cavity. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023), pp. t1-t16. http://geodesic.mathdoc.fr/item/MBB_2023_18_a0/
[1] B. Brunekreef, S. T. Holgate, “Air pollution and health”, Lancet, 360 (2002), 1233–1242 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0140-6736(02)11274-8'>10.1016/S0140-6736(02)11274-8</ext-link>
[2] N. V. Zaitseva, O. Iu. Ustinova, A. I. Aminova, Hygienic aspects of children's health disorders under the influence of chemical factors of the environment, ed. Zaitseva N.V., Perm', 2011, 489 pp. (in Russ.)
[3] Y. F. Xing, Y. H. Xu, M. H. Shi, Y. X. Lian, “The impact of PM2.5 on the human respiratory system”, Journal of Thoracic Disease. 2016, 8:1, E69–E74 <ext-link ext-link-type='doi' href='https://doi.org/10.3978/j.issn.2072-1439.2016.01.19'>10.3978/j.issn.2072-1439.2016.01.19</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=820367'>820367</ext-link>
[4] E. M. Vlasova, A. A. Vorobeva, T. A. Ponomareva, “Peculiarities of cardiovascular pathology formation in workers of titanium-magnesium production”, Russian Journal of Occupational Health and Industrial Ecology, 9 (2017), 38 (in Russ.)
[5] I. V. Tikhonova, M. A. Zemlyanova, Yu. V. Kol'dibekova, E. V. Peskova, A. M. Ignatova, “Hygienic assessment of aerogenic exposure to particulate matter and its impacts on morbidity with respiratory diseases among children living in a zone influenced by emissions from metallurgic production”, Health Risk Analysis, 3 (2020), 61–69 <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2020.3.07.eng'>10.21668/health.risk/2020.3.07.eng</ext-link>
[6] E. M. Vlasova, O. Yu. Ustinova, A. E. Nosov, S. Yu. Zagorodnov, “Peculiarities of respiratory organs diseases in smelters dealing with titanium alloys under combined exposure to fine-disperse dust and chlorine compounds”, Hygiene and Sanitation, 98:2 (2019), 153–158 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.18821/0016-9900-2019-98-2-153-158'>10.18821/0016-9900-2019-98-2-153-158</ext-link>
[7] A. L. Grebenev, Propedeutics of Internal Medicine, M., 2001, 592 pp. (in Russ.)
[8] B. S. Shkliar, Diagnostics of internal diseases, Kiev, 1972, 516 pp. (in Russ.)
[9] P. V. Trusov, N. V. Zaitseva, D. A. Kiryanov, M. R. Kamaltdinov, M. Ju. Cinker, V. M. Chigvintsev, D. V. Lanin, “A Mathematical model for evolution of human functional disorders influenced by environment factors”, Mathematical Biology and Bioinformatics, 7:2 (2012), 589–610 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2012.7.589'>10.17537/2012.7.589</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2963820'>2963820</ext-link>
[10] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modeling of human breath: conceptual and mathematical statements”, Mathematical Biology and Bioinformatics, 11:1 (2016), 4–80 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.64'>10.17537/2016.11.64</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link>
[11] M. R. Kamaltdinov, “3D modeling of antroduodenal zone motility of digestive track for the purpose of health risks evaluation with peroral exposition to chemicals”, Health Risk Analysis, 2 (2014), 68–75 <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2014.2.08.eng'>10.21668/health.risk/2014.2.08.eng</ext-link>
[12] D. A. Kiryanov, D. V. Lanin, V. M. Chigvintsev, “Mathematical model of immune and neuroendocrine systems functioning with regard to evolution of organ synthetic function violations”, Health Risk Analysis, 3 (2015), 68–72 <ext-link ext-link-type='doi' href='https://doi.org/10.21668/health.risk/2015.3.10.eng'>10.21668/health.risk/2015.3.10.eng</ext-link>
[13] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babuskina, “Modelling dusty air flow in the human resperatory tract”, Russian Journal of Biomechanics, 22:3 (2018), 301–314 (in Russ.)
[14] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “On modeling of airflow in human lungs: constitutive relations to describe deformation of porous medium”, PNRPU Mechanics Bulletin, 4 (2020), 165–174 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.15593/perm.mech/2020.4.14'>10.15593/perm.mech/2020.4.14</ext-link>
[15] J. Bruning, T. Hildebrandt, W. Heppt, N. Schmidt, H. Lamecker, A. Szengel, N. Amiridze, H. Ramm, M. Bindernagel, S. Zachow, L. Goubergrits, “Characterization of the Airflow within an Average Geometry of the Healthy Human Nasal Cavity”, Scientific Reports, 10:1 (2020), 3755 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41598-020-60755-3'>10.1038/s41598-020-60755-3</ext-link>
[16] V. L. Ganimedov, M. I. Muchnaya, A. S. Sadovskii, “Air flow in the human nasal cavity. Results of mathematical modelling”, Russian Journal of Biomechanics, 19:1 (2015), 31–44
[17] V. M. Fomin, V. N. Vetlutsky, V. L. Ganimedov, M. I. Muchnaya, V. N. Shepelenko, M. N. Melnikov, A. A. Savina, “Air flow in the human nasal cavity”, Journal of Applied Mechanics and Technical Physics, 51:2 (2010), 233–240 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10808-010-0033-y'>10.1007/s10808-010-0033-y</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1272.76325'>1272.76325</ext-link>
[18] A. S. Sadovskii, L. Iu. Bosykh, V. L. Ganimedov, M. I. Muchnaia, The XI All-Russian Congress on Basic Problems of Theoretical and Applied Mechanics, abstracts, 2015, 3298–3300 (in Russ.)
[19] V. L. Ganimedov, M. I. Muchnaya, “Numerical simulation of particle deposition in the human nasal cavity”, Thermophysics and Aeromechanics, 27:2 (2020), 303–312 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0869864320020122'>10.1134/S0869864320020122</ext-link>
[20] A. Voronin, G. Luk'yanov, R. Neronov, “Computational modeling of airflow in nonregular shaped channels”, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 3:85 (2013), 113–118 (in Russ.)
[21] R. V. Neronov, G. N. Luk'yanov, A. A. Rassadina, A. A. Voronin, A. G. Malyshev, “The effect of the nasal cavity form on air flow distribution during inhalation”, Russian Otorhinolaryngology, 1:86 (2017), 83–94 (in Russ.) <ext-link ext-link-type='doi' href='https://doi.org/10.18692/1810- 4800-2017-1-83-94'>10.18692/1810- 4800-2017-1-83-94</ext-link>
[22] G. N. Lukyanov, A. A. Voronin, A. A. Rassadina, “Simulation of convective flows in irregular channels on the example of the human nasal cavity and paranasal sinuses”, Technical Physics, 62:3 (2017), 484–489 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1063784217030136'>10.1134/S1063784217030136</ext-link>
[23] H. Tang, J. Y. Tu, H. F. Li, B. Au-Hijleh, C. C. Xue, C. G. Li, “Dynamic Analysis of Airflow Features in a 3D Real-Anatomical Geometry of the Human Nasal Cavity”, 15th Australasian Fluid Mechanics Conference (Sydney, Australia), 2004 (accessed 15.06.2021) <ext-link ext-link-type='uri' href='https://www.aeromech.usyd.edu.au/15afmc/proceedings/papers/AFMC00174.pdf'>https://www.aeromech.usyd.edu.au/15afmc/proceedings/papers/AFMC00174.pdf</ext-link>
[24] P. Zamankhan, G. Ahmadi, Z. Wang, P. K. Hopke, Cheng Y-S, W. S. Su, D. Leonard, “Airflow and Deposition of Nano-Particles in a Human Nasal Cavity”, Aerosol Science and Technology, 40 (2006), 463–476 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/02786820600660903'>10.1080/02786820600660903</ext-link>
[25] S. E. Saghaian, A. R. Azimian, R. Dadkhah S. Jalilvand, S. M. Saghaian, “Computational analysis of airflow and particle deposition fraction in the upper part of the human respiratory system”, Biology, Engineering and Medicine, 3:6 (2018), 6–9 <ext-link ext-link-type='doi' href='https://doi.org/10.15761/BEM.1000155'>10.15761/BEM.1000155</ext-link>
[26] D. J. Doorly, D. J. Taylor, A. M. Gambaruto, R. C. Schroter, N. Tolley, “Nasal architecture: form and flow”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsta.2008.0083'>10.1098/rsta.2008.0083</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1154.76066'>1154.76066</ext-link>
[27] D. J. Doorly, D. J. Taylor, R. C. Schroter, “Mechanics of airflow in the human nasal airways”, Respiratory Physiology and Neurobiology, 163 (2008), 100–110 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2008.07.027'>10.1016/j.resp.2008.07.027</ext-link>
[28] K. Inthavong, P. Das, N. Singh, J. Sznitman, “In silico approaches to respiratory nasal flows: A review”, Journal of Biomechanics, 97 (2019), 109434 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2019.109434'>10.1016/j.jbiomech.2019.109434</ext-link>
[29] R. Subramaniam, R. Richardson, K. Morgan, J. Kimbell, R. Guilmette, “Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx”, Inhalation Toxicology, 1998, 91–120 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/089583798197772'>10.1080/089583798197772</ext-link>
[30] K. Zhao, P. W. Scherer, S. A. Hajiloo, P. Dalton, “Effect of anatomy on human nasal air flow and odorant transport patterns: Implications for olfaction”, Chemical Senses, 29:5 (2004), 365–379 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/chemse/bjh033'>10.1093/chemse/bjh033</ext-link>
[31] Y. D. Shang, K. Inthavong, J. Y. Tu, “Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone”, Computers and Fluids, 114 (2015), 141–150 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.compfluid.2015.02.020'>10.1016/j.compfluid.2015.02.020</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3336811'>3336811</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1390.76943'>1390.76943</ext-link>
[32] G. J. Garcia, N. Bailie, D. A. Martins, J. S. Kimbell, “Atrophic rhinitis: A CFD study of air conditioning in the nasal cavity”, Journal of Applied Physiology, 103 (2007), 1082–1092 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/japplphysiol.01118.2006'>10.1152/japplphysiol.01118.2006</ext-link>
[33] Q. J. Ge, K. Inthavong, J. Y. Tu, “Local deposition fractions of ultrafine particles in a human nasal-sinus cavity CFD model”, Inhalation Toxicology, 24:8 (2012), 492–505 <ext-link ext-link-type='doi' href='https://doi.org/10.3109/08958378.2012.694494'>10.3109/08958378.2012.694494</ext-link>
[34] V. Goodarzi-Ardakani, M. Taeibi-Rahni, M. R. Salimi, G. Ahmadi, “Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air”, Respiratory Physiology and Neurobiology, 223 (2016), 49–58 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2016.01.001'>10.1016/j.resp.2016.01.001</ext-link>
[35] I. Horschler, C. Brucker, W. Schr?oder, M. Meinke, “Investigation of the impact of the geometry on the nose flow”, European Journal of Mechanics, B/Fluids, 25 (2006), 471–490 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.euromechflu.2005.11.006'>10.1016/j.euromechflu.2005.11.006</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1122.76102'>1122.76102</ext-link>
[36] J. Wen, K. Inthavong, J. Tu, S. Wang, “Numerical simulations for detailed airflow dynamics in a human nasal cavity”, Respiratory Physiology and Neurobiology, 161 (2008), 125–135 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.resp.2008.01.012'>10.1016/j.resp.2008.01.012</ext-link>
[37] J. Lindemann, H. J. Brambs, T. Keck, K. M. Wiesmiller, G. Rettinger, D. Pless, “Numerical simulation of intranasal airflow after radical sinus surgery”, American Journal of Otolaryngology Head and Neck Medicine and Surgery, 26:3 (2005), 175–180 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.amjoto.2005.02.010'>10.1016/j.amjoto.2005.02.010</ext-link>
[38] I. V. Mai, N. V. Zaitseva, T. S. Ulanova, S. A. Vekovshinina, S. Iu. Zagorodnov, A. A. Kokoulina, E. V. Sedusova, E. V. Popova, Industrial dust atlas. Dust from engineering, metallurgical, mining, mining and processing industries and non-ferrous metallurgy enterprises, Perm', 2014, 285 pp. (in Russ.)
[39] Y. Liu, M. R. Johnson, E. A. Matida, S. Kherani, J. Marsan, “Creation of a standardized geometry of the human nasal cavity”, J. Appl. Physiol., 106 (2009), 784–795 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/japplphysiol.90376.2008'>10.1152/japplphysiol.90376.2008</ext-link>
[40] E. I. Borziak, L. I. Volkova, E. A. Dobrovol'skaia, V. S. Revazov, M. R. Sapin, Human anatomy, v. 1, ed. M.R. Sapin, M., 1993, 544 pp. (in Russ.)
[41] Y. Liu, E. A. Matida, M. R. Johnson, “Experimental measurements and computational modeling of aerosol deposition in the Carleton-Civic standardized human nasal cavity”, Journal of Aerosol Science, 41 (2010), 569–586 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jaerosci.2010.02.014'>10.1016/j.jaerosci.2010.02.014</ext-link>
[42] K. Inthavong, J. Wen, J. Tu, Z. Tian, “From CT scans to CFD modelling-fluid and heat transfer in a realistic human nasal cavity”, Eng. Appl. Comput. Fluid Mech., 3:3 (2009), 321–335 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/19942060.2009.11015274'>10.1080/19942060.2009.11015274</ext-link>
[43] J. M. Garcia, J. D. Schroeter, J. S. Kimbell, “Sniffing out airflow and transport processes in the nasal cavity”, Fluent News Appl. Comput. Fluid Dynamics, 15:3 (2006), 3–5
[44] B. A. Katsnel'son, O. G. Alekseeva, L. I. Privalova, E. V. Polzik, Pneumoconiosis: pathogenesis and biological prevention, Ekaterinburg, 1995, 325 pp. (in Russ.)
[45] J. D. Brain, P. A. Valberg, “Models of lung retention based on the ICRP task group report”, Arch. Environ. Health, 28:1 (1974), 1–11 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00039896.1974.10666424'>10.1080/00039896.1974.10666424</ext-link>