Numeric investigation of non-stationary dust-containing airflow and deposition of dust particles in the lower airways
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 347-366.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within creation of the mathematical model to describe the human respiratory system, we accomplished numeric investigation of non-stationary dust-containing airflow as well as dust particle deposition in the lower airways with the real anatomic geometry based on CT scans. Inhaled air is considered a multi-phase mixture of a homogenous gas and solid dust particles. Motion of a basic carrier gas phase is described using the Euler approach. Solid dust particles are a dispersed carried phase, which is described with the Lagrange approach. The $k$$\omega$ model is used to describe turbulence. We consider non-stationary airflow during calm inhalation. The article presents calculated flow streamlines for the velocity of particles in inhaled air in the lower airways at different moments. We quantified a share of deposited particles (SDP) with various dispersed structure (between 10 nm and 100 $\mu$m) and density (1000 kg/m$^3$, 2000 kg/m$^3$, 2700 kg/m$^3$) in the lower airways; the article provides computed motion paths of particulate matter. Solid particle deposition in the airways has different efficiency depending on particle sizes and density. SDP goes down as their sizes and masses decrease. Particle density mostly influences differences in deposition of micro-sized particles (2.5–20 $\mu$m): as particle mass and density grow, SDP in the airways also increases. SDP with their diameter being less than 1$\mu$m amounts to approximately 20% of all the particles that reach the inlet to the trachea. According to the results obtained by numeric modeling, the greatest share of dust particles penetrates the right main bronchus, predominantly the right middle and inferior lobar bronchi. Dust particles are able to induce diseases of the lungs, pneumoconiosis included.
@article{MBB_2023_18_2_a9,
     author = {P. V. Trusov and N. V. Zaitseva and M. Yu. Cinker and A. I. Kuchukov},
     title = {Numeric investigation of non-stationary dust-containing airflow and deposition of dust particles in the lower airways},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {347--366},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a9/}
}
TY  - JOUR
AU  - P. V. Trusov
AU  - N. V. Zaitseva
AU  - M. Yu. Cinker
AU  - A. I. Kuchukov
TI  - Numeric investigation of non-stationary dust-containing airflow and deposition of dust particles in the lower airways
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 347
EP  - 366
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a9/
LA  - ru
ID  - MBB_2023_18_2_a9
ER  - 
%0 Journal Article
%A P. V. Trusov
%A N. V. Zaitseva
%A M. Yu. Cinker
%A A. I. Kuchukov
%T Numeric investigation of non-stationary dust-containing airflow and deposition of dust particles in the lower airways
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 347-366
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a9/
%G ru
%F MBB_2023_18_2_a9
P. V. Trusov; N. V. Zaitseva; M. Yu. Cinker; A. I. Kuchukov. Numeric investigation of non-stationary dust-containing airflow and deposition of dust particles in the lower airways. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 347-366. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a9/

[1] P. Yin, M. Brauer, A. J. Cohen, H. Wang, J. Li, R. T. Burnett, J. D. Stanaway, K. Causey, S. Larson, W. Godwin, J. Frostad, A. Marks, L. Wang, M. Zhou, C. J.L. Murray, “The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, : an analysis for the Global Burden of Disease Study, 1990–2017”, Lancet Planet Healt, 4:9 (2020), e386-e398 | DOI

[2] V. N. Rakitskii, S. L. Avaliani, S. M. Novikov, T. A. Shashina, N. S. Dodina, V. A. Kislitsin, “Analiz riska zdorovyu pri vozdeistvii atmosfernykh zagryaznenii kak sostavnaya chast strategii umensheniya globalnoi epidemii neinfektsionnykh zabolevanii”, Analiz riska zdorovyu, 2019, no. 4, 30–36 | DOI

[3] WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, World Health Organization, Geneva, 2021 (data obrascheniya: 08.10.2023) https://pubmed.ncbi.nlm.nih.gov/34662007/

[4] Y. F. Xing, Y. H. Xu, M. H. Shi, Y. X. Lian, “The impact of PM2.5 on the human respiratory system”, Journal of Thoracic Disease, 27:1 (2016), E69–E74 | DOI | MR

[5] K. J. Maji, A. K. Dikshit, M. Arora, A. Deshpande, “Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020”, Sci. Total Environ., 612 (2018), 683–693 | DOI

[6] I. V. Tikhonova, M. A. Zemlyanova, Yu. V. Koldibekova, E. V. Peskova, A. M. Ignatova, “Gigienicheskaya otsenka aerogennogo vozdeistviya vzveshennykh veschestv na zabolevaemost detei boleznyami organov dykhaniya v zone vliyaniya vybrosov metallurgicheskogo proizvodstva”, Analiz riska zdorovyu, 2020, no. 3, 61–69 | DOI

[7] A. Grzywa-Celinska, A. Krusinski, J. Milanowski, “'Smoging kills' Effects of air pollution on human respiratory system”, Ann. Agric. Environ. Med., 27:1 (2020), 1–5 | DOI

[8] T. Wei, C. Chen, Y. Yang, L. Li, J. Wang, M. Ye, H. Kan, D. Yang, Y. Song, J. Cai, D. Hou, “Associations between short-term exposure to ambient air pollution and lung function in adults”, J. Expo. Sci. Environ. Epidemiol., 2023 | DOI

[9] G. Adamkiewicz, J. Liddie, J. M. Gaffin, “The Respiratory Risks of Ambient/Outdoor Air Pollution”, Clin. Chest Med., 41:4 (2020), 809–824 | DOI

[10] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modelirovanie protsessa dykhaniya cheloveka: kontseptualnaya i matematicheskaya postanovki”, Matematicheskaya biologiya i bioinformatika, 11:1 (2016), 64–80 | DOI | MR

[11] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Nekrasova, “Matematicheskaya model techeniya vozdukha s tverdymi chastitsami v nosovoi polosti cheloveka”, Matematicheskaya biologiya i bioinformatika, 16:2 (2021), 349–366 | DOI | MR

[12] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babushkina, “Modelirovanie techeniya zapylennogo vozdukha v respiratornom trakte”, Rossiiskii zhurnal biomekhaniki, 22:3 (2018), 301–314 | DOI

[13] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “O modelirovanii techeniya vozdukha v legkikh cheloveka: konstitutivnye sootnosheniya dlya opisaniya deformirovaniya poristoi sredy”, Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2020, no. 4, 165–174 | DOI

[14] C. V. Ertbruggen, C. Hirsch, M. Paiva, “Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics”, Journal of Applied Physiololgy, 98 (2004), 970–980 | DOI

[15] Z. Zhang, C. Kleinstreuer, J. F. Donohue, C. S. Kim, “Comparison of micro- and nano-size particle depositions in a human upper airway model”, Journal of Aerosol Science, 36:2 (2005), 211–233 | DOI

[16] J. Huang, L. Zhang, “Numerical simulation of micro-particle deposition in a realistic human upper respiratory tract model during transient breathing cycle”, Particuology, 9:4 (2011), 424–431 | DOI

[17] C. Ou, J. Hang, Q. Deng, “Particle Deposition in Human Lung Airways: Effects of Airflow, Particle Size, and Mechanisms”, Aerosol and Air Quality Research, 20 (2020), 2846–2858 | DOI

[18] Md. M. Rahman, M. Zhao, M. S. Islam, K. Dong, S. C. Saha, “Nanoparticle transport and deposition in a heterogeneous human lung airway tree: An efficient one path model for CFD simulations”, European Journal of Pharmaceutical Sciences, 177 (2022), 106279 | DOI

[19] J. Choi, Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs, PhD Dissertation, University of Iowa, Iowa, 2011, 259 pp.

[20] W. A. Wall, T. Rabczuk, “Fluid structure interaction in lower airways of CT-based lung geometries”, Int. J. Num. Methods in fluids, 57 (2008), 653–675 | DOI | MR | Zbl

[21] A. R. Lambert, P. O'Shaughnessy, M. H. Tawhai, E. A. Hoffman, C. L. Lin, “Regional deposition of particles in an image-based airway model: large-eddy simulation and left right lung ventilation asymmetry”, Aerosol Sci. Technol, 45:1 (2011), 11–25 | DOI | MR

[22] M. Rahman, M. Zhao, M. S. Islam, K. Dong, S. C. Saha, “Numerical study of nano and micro pollutant particle transport and deposition in realistic human lung airways”, Powder Technology, 402 (2022), 117364 | DOI

[23] I. Katz, M. Pichelin, S. Montesantos, A. Murdock, S. Fromont, J. Venegas, G. Caillibotte, “The influence of lung volume during imaging on CFD within realistic airway models”, Aerosol Science and Technology, 51:2 (2017), 214–223 | DOI

[24] M. Rahimi-Gorji, O. Pourmehran, M. Gorji-Bandpy, T. B. Gorji, “CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways”, Journal of Molecular Liquids, 209 (2015), 121–133 | DOI

[25] J. Lin, J. R. Fan, Y. Q. Zheng, G. L. Hu, D. Pan, “Numerical simulation of inhaled aerosol particle deposition within 3D realistic human upper respiratory tract”, AIP Conference Proceedings, 1207:1 (2010), 992–997 | DOI

[26] A. Naseri, S. Shaghaghian, O. Abouali, G. Ahmadi, “Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways”, Respir. Physiol. Neurobiol, 244 (2017), 56–72 | DOI

[27] M. Kiasadegh, H. Emdad, G. Ahmadi, O. Abouali, “Transient numerical simulation of airflow and fibrous particles in a human upper airway model”, Journal of Aerosol Science, 140 (2019), 105480 | DOI

[28] S. Qi, B. Zhang, Y. Teng, J. Li, Y. Yue, Y. Kang, Qian, W., Transient dynamics simulation of airflow in a CT-scanned human airway tree: More or fewer terminal bronchi?, Comput. Math. Methods Med., 2017 (2017), 1969023 | DOI | MR

[29] E. R. Veibel, Morfometriya legkikh cheloveka, Meditsina, M., 1970, 176 pp.

[30] K. Bradshaw, P. Warfield-McAlpine, S. Vahaji, J. Emmerling, H. Salati, R. Sacks, D. F. Fletcher, N. Singh, K. Inthavong, “New insights into the breathing physiology from transient respiratory nasal simulation”, Physics of Fluids, 34:11 (2022), 115103 | DOI

[31] H. Y. Luo, Y. Liu, “Modeling the bifurcating flow in a CT-scanned human lung airway”, Journal of Biomechanics, 41:12 (2008), 2681–2688 | DOI

[32] S. Qi, B. Zhang, Y. Yue, J. Shen, Y. Teng, W. Qian, J. Wu, “Airflow in Tracheobronchial Tree of Subjects with Tracheal Bronchus Simulated Using CT Image Based Models and CFD Method”, J. Med. Syst., 42:4 (2018), 65 | DOI | MR

[33] M. Rahimi-Gorji, T. B. Gorji, M. Gorji-Bandpy, “Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two phase flow simulation”, Computers in Biology and Medicine, 74 (2016), 1–17 | DOI

[34] E. I. Borzyak, L. I. Volkova, E. A. Dobrovolskaya, V. S. Revazov, M. R. Sapin, Anatomiya cheloveka, v dvukh tomakh, v. 1, ed. M.R. Sapin, Meditsina, M., 1993, 544 pp.

[35] V. G. Kukes, V. F. Marinin, I. A. Reutskii, S. I. Sivkov, Vrachebnye metody diagnostiki: (osmotr, palpatsiya, perkussiya, auskultatsiya), GEOTAR Media, M., 2006, 720 pp.

[36] Yu. L. Zolotko, Atlas topograficheskoi anatomii cheloveka, Meditsina, M., 1967, 272 pp.

[37] E. Dzh. Morgan, S. M. Megid, Klinicheskaya anesteziologiya, v. 2, BINOM-Nevskii Dialekt, M.–SPb., 2001, 396 pp.

[38] Dzh. Uest, Fiziologiya dykhaniya. Osnovy, Mir, M., 1988, 196 pp.

[39] M. E. Giannaccini, K. Yue, J. Graveston, M. Birchall, A. Conn, J. Rossiter, “Respiratory simulator for robotic respiratory tract treat-mentsin”, Proc. IEEE Int. Conf. Robot. Biomimet. (ROBIO), 2017, 2314–2319 | DOI

[40] D. C. Wilcox, “Reassessment of the Scale-Determining Equation for Advanced Turbulence Models”, AIAA Journal, 26:11 (1988), 1299–1309 | DOI | MR

[41] L. Schiller, A. Naumann, “Uber die grundlegenden Berechnungen bei der Schwerkraft aufbereitung”, Z. Verein Deutsch Ing., 77 (1933), 318–320

[42] I. F. Kostyuk, V. A. Kapustnik, V. P. Brykallin, A. A. Kalmykov, Professionalnye bolezni, uchebnoe posobie, KhGMU, Kharkov, 2007, 155 pp.

[43] L. V. Artemova, N. V. Baskova, T. B. Burmistrova, E. A. Buryakina, I. V. Bukhtiyarov, A. Yu. Bushmanov, O. S. Vasileva, V. G. Vlasov, Yu. Yu. Gorblyanskii, S. A. Zhabina i dr, Federalnye klinicheskie rekomendatsii po diagnostike, lecheniyu i profilaktike pnevmokoniozov, eds. N.F. Izmerov i dr., M., 2014, 46 pp.

[44] L. V. Artemova, N. V. Baskova, T. B. Burmistrova, E. A. Buryakina, I. V. Bukhtiyarov, A. Yu. Bushmanov, O. S. Vasileva, V. G. Vlasov, Yu. Yu. Gorblyanskii, S. A. Zhabina i dr, “Federalnye klinicheskie rekomendatsii po diagnostike, lecheniyu i profilaktike pnevmokoniozov”, Meditsina truda i promyshlennaya ekologiya, 2016, no. 1, 36–49