Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a8, author = {G. P. Neverova and O. L. Zhdanova}, title = {Complex dynamics modes in a simple model of prey-predator community: {Bistability} and multistability}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {308--322}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a8/} }
TY - JOUR AU - G. P. Neverova AU - O. L. Zhdanova TI - Complex dynamics modes in a simple model of prey-predator community: Bistability and multistability JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 308 EP - 322 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a8/ LA - ru ID - MBB_2023_18_2_a8 ER -
%0 Journal Article %A G. P. Neverova %A O. L. Zhdanova %T Complex dynamics modes in a simple model of prey-predator community: Bistability and multistability %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 308-322 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a8/ %G ru %F MBB_2023_18_2_a8
G. P. Neverova; O. L. Zhdanova. Complex dynamics modes in a simple model of prey-predator community: Bistability and multistability. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 308-322. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a8/
[1] V. P. Shuntov, Biologiya dalnevostochnykh morei Rossii, TINRO tsentr, Vladivostok, 2016, 604 pp.
[2] K. M. Gorbatenko, “Raspredelenie, biomassa, mezhgodovaya dinamika sagitt Okhotskogo morya”, Izv. TINRO, 184 (2016), 168–177
[3] E. P. Dulepova, “Dinamika produktsionnykh pokazatelei zooplanktona v severo zapadnoi chasti Beringova morya v sovremennyi period”, Izv. TINRO, 187 (2016), 187–196
[4] E. P. Dulepova, “Sostoyanie planktonnykh soobschestv i kormovaya obespechennost mintaya v severo-zapadnoi chasti Beringova morya v sovremennyi period”, Tr. VNIRO, 174 (2018), 91–104
[5] E. P. Dulepova, Sravnitelnaya bioproduktivnost makroekosistem dalnevostochnykh morei, TINRO-tsentr, Vladivostok, 2002, 274 pp.
[6] V. A. Silkin, A. I. Abakumov, L. A. Pautova, S. V. Pakhomova, A. V. Lifanchuk, “Mechanisms of regulation of invasive processes in phytoplankton on the example of the north-eastern part of the Black Sea”, Aquatic Ecology, 50:2 (2016), 221–234 | DOI
[7] S. G. Leles, J. E.L. Valentin, G. M. Figueiredo, “Evaluation of the complexity and performance of marine planktonic trophic models”, Anais da Academia Brasileira de Ciencias, 88 (2016), 1971–1991 | DOI
[8] S. V. Berdnikov, V. V. Selyutin, F. A. Surkov, Yu. V. Tyutyunov, “Modelirovanie morskikh ekosistem: opyt, sovremennye podkhody, napravleniya razvitiya (obzor). Chast 2. Modeli populyatsii i trofodinamiki”, Morskoi gidrofizicheskii zhurnal, 38:2 (2022), 196–217 | DOI | MR
[9] M. Scheffer, S. Rinaldi, Y. A. Kuznetsov, E. H. van Nes, “Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system”, Oikos, 1997, 519–532 | DOI
[10] E. Steffen, H. Malchow, A. B. Medvinsky, “Effects of seasonal perturbations on a model plankton community”, Environmental Modeling Assessment, 2 (1997), 43–48 | DOI
[11] A. B. Medvinskii, S. V. Petrovskii, I. A. Tikhonova, D. A. Tikhonov, B. L. Li, E. Venturino, G. R. Ivanitskii, “Formirovanie prostranstvenno-vremennykh struktur, fraktaly i khaos v kontseptualnykh ekologicheskikh modelyakh na primere dinamiki vzaimodeistvuyuschikh populyatsii planktona i ryby”, Uspekhi fizicheskikh nauk, 172:1 (2002), 31–66 | DOI
[12] S. V. Petrovskii, H. Malchow, “A minimal model of pattern formation in a prey-predator system”, Mathematical and Computer Modelling, 29:8 (1999), 49–63 | DOI | MR | Zbl
[13] S. V. Petrovskii, H. Malchow, “Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics”, Theoretical Population Biology, 59:2 (2001), 157–174 | DOI | Zbl
[14] M. Scheffer, S. Rinaldi, Y. A. Kuznetsov, “Effects of fish on plankton dynamics: a theoretical analysis”, Canadian Journal of Fisheries and Aquatic Sciences, 57:6 (2000), 1208–1219 | DOI
[15] A. B. Medvinsky, I. A. Tikhonova, R. R. Aliev, B. L. Li, Z. S. Lin, H. Malchow, “Patchy environment as a factor of complex plankton dynamics”, Physical Review E, 64:2 (2001), 021915 | DOI | MR
[16] G. P. Neverova, O. L. Zhdanova, A. I. Abakumov, “Diskretnaya model sezonnogo tsveteniya planktona”, Matematicheskaya biologiya i bioinformatika, 15:2 (2020), 235–250 | DOI
[17] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 182 pp.
[18] Yu. M. Svirezhev, “Nonlinearities in mathematical ecology: Phenomena and models”, Would we live in Volterra's world? Ecological Modelling, 216 (2008), 89–101 | DOI
[19] Yu. V. Tyutyunov, L. I. Titova, F. A. Surkov, E. N. Bakaeva, “Troficheskaya funktsiya kolovratok-fitofagov (Rotatoria). Eksperiment i modelirovanie”, Zhurnal obschei biologii, 71:1 (2010), 52–62
[20] Yu. V. Tyutyunov, L. I. Titova, “Ot Lotki-Volterra k Arditi-Ginzburgu: 90 let evolyutsii troficheskikh funktsii”, Zhurnal obschei biologii, 79:6 (2018), 428–448 | DOI
[21] A. B. Medvinskii, B. V. Adamovich, A. V. Rusakov, D. A. Tikhonov, N. I. Nurieva, V. M. Tereshko, “Dinamika populyatsii: matematicheskoe modelirovanie i realnost”, Biofizika, 64:6 (2019), 1169–1192 | DOI
[22] G. P. Neverova, O. L. Zhdanova, “Sravnitelnyi analiz dinamiki prostykh matematicheskikh modelei planktonnogo soobschestva c razlichnymi funktsiyami otklika”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 465–480 | DOI | MR
[23] U. E. Riker, Metody otsenki i interpretatsii biologicheskikh pokazatelei populyatsii ryb, Pisch. prom-t, M., 1979
[24] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151 | DOI | MR
[25] E. Ya. Frisman, O. L. Zhdanova, M. P. Kulakov, G. P. Neverova, O. L. Revutskaya, “Matematicheskoe modelirovanie populyatsionnoi dinamiki na osnove rekurrentnykh uravnenii: rezultaty i perspektivy. Chast I”, Izvestiya RAN. Seriya biologicheskaya, 2021, no. 1, 3–18 | DOI
[26] A. P. Kuznetsov, Yu. V. Sedova, “Bifurkatsii trekhmernykh i chetyrekhmernykh otobrazhenii: universalnye svoistva”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 20:5 (2012), 26–43 | DOI | Zbl
[27] A. P. Kuznetsov, A. V. Savin, Yu. V. Sedova, L. V. Tyuryukina, Bifurkatsii otobrazhenii, OOO Izdatelskii tsentr «Nauka», Saratov, 2012, 196 pp.
[28] M. Kulakov, G. Neverova, E. Frisman, “The Ricker competition model of two species: dynamic modes and phase multistability”, Mathematics, 10:7 (2022), 1076 | DOI