Polymerase $\beta$ limits the rate of DNA single-strand break repair
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 294-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

Breaks that appear in DNA and violate its integrity are a serious threat to the life of the cell. There is a special repair system for their recovery, which includes many different enzymes. However, the exact mechanisms of this process are currently still unclear. In this article, we considered single-strand discontinuities based on the Michaelis–Menten equation and using the quasi-equilibrium approximation. A scheme of interaction between the mechanisms of the reparation system was developed and a computational model was built in the COPASI software to verify it. As a result of the work, the dependences of the concentrations of the participants in the repair system were obtained, and the known experimental data were also approximated. We observed that the plot with a logarithmic scale of fully corrected DNA concentration versus time is close to a sigmoid. We obtained that, the polymerase enzymatic reaction is the limiting factor for the rate of DNA repair and the rate of ligase operation is limited by the rate of DNA appearance. Being a regulatory link in the DNA repair system, polymerase and its parameters exert a control influence on the rest of the model parameters. In turn, the parameters for PARP1, PNKP, and LIG3$\alpha$ should provide rates of enzymatic reactions higher than the rate of polymerase operation.
@article{MBB_2023_18_2_a7,
     author = {E. M. Pozdnyakov and A. D. Korneichuk and A. V. Rogacheva and G. A. Vasilev},
     title = {Polymerase $\beta$ limits the rate of {DNA} single-strand break repair},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {294--307},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a7/}
}
TY  - JOUR
AU  - E. M. Pozdnyakov
AU  - A. D. Korneichuk
AU  - A. V. Rogacheva
AU  - G. A. Vasilev
TI  - Polymerase $\beta$ limits the rate of DNA single-strand break repair
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 294
EP  - 307
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a7/
LA  - ru
ID  - MBB_2023_18_2_a7
ER  - 
%0 Journal Article
%A E. M. Pozdnyakov
%A A. D. Korneichuk
%A A. V. Rogacheva
%A G. A. Vasilev
%T Polymerase $\beta$ limits the rate of DNA single-strand break repair
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 294-307
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a7/
%G ru
%F MBB_2023_18_2_a7
E. M. Pozdnyakov; A. D. Korneichuk; A. V. Rogacheva; G. A. Vasilev. Polymerase $\beta$ limits the rate of DNA single-strand break repair. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 294-307. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a7/

[1] B. M. Sutherland, P. V. Bennett, O. Sidorkina, J. Laval, “Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks”, Biochemistry, 39:27 (2000), 8026–8031 | DOI

[2] M. A. Plumb, G. C.M. Smith, S. M.T. Cunniffe, S. P. Jackson, P. O'Neill, “DNA-PK activation by ionizing radiation-induced DNA single-strand breaks”, Int. J. Radiat. Biol., 75:5 (1999), 553–561 | DOI

[3] K. W. Caldecott, “Single-strand break repair and genetic disease”, Nat. Rev. Genet., 9:8 (2008), 619–631 | DOI

[4] C. L. Yao, G. N. Somero, “The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and Mytilus californianus): DNA damage, membrane integrity, apoptosis and signaling pathways”, J. Exp. Biol., 215:24 (2012), 4267–4277 | DOI

[5] D. L. Miller, J. A. Reese, M. E. Frazier, “Single strand DNA breaks in human leukocytes induced by ultrasound in vitro”, Ultrasound Med. Biol, 15:8 (1989), 765–771 | DOI

[6] R. Abbotts, D. M. Wilson, “Coordination of DNA single strand break repair”, Oxidative DNA Damage Repair, 107 (2017), 228–244 | DOI

[7] K. W. Caldecott, “DNA single-strand breaks and neurodegeneration”, DNA Repair, 3:8 (2004), 875–882 | DOI

[8] V. E. Provasek, J. Mitra, V. H. Malojirao, M. L. Hegde, “DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders”, Int. J. Mol. Sci, 23:9 (2022) | DOI

[9] K. W. Caldecott, “DNA single-strand break repair”, Experimental Cell Research, 329:1 (2014), 2–8 | DOI

[10] P. Fortini, E. Dogliotti, “Base damage and single-strand break repair: Mechanisms and functional significance of short- and long-patch repair subpathways”, DNA Repair, 6:4 (2007), 398–409 | DOI

[11] C. Godon, F. P. Cordelieres, D. Biard, N. Giocanti, F. Megnin-Chanet, J. Hall, V. Favaudon, “PARP inhibition versus PARP-1 silencing: different outcomes in terms of single strand break repair and radiation susceptibility”, Nucleic Acids Res., 36:13 (2008), 4454–4464 | DOI

[12] B. N. Ames, M. K. Shigenaga, T. M. Hagen, “Oxidants, antioxidants, and the degenerative diseases of aging”, Proc. Natl. Acad. Sci. U. S. A, 90:17 (1993), 7915–7922 | DOI

[13] K. A. Pooley, C. Baynes, K. E. Driver, J. Tyrer, E. M. Azzato, P. D.P. Pharoah, D. F. Easton, B. A.J. Ponder, A. M. Dunning, “Common Single-Nucleotide Polymorphisms in DNA Double-Strand Break Repair Genes and Breast Cancer Risk”, Cancer Epidemiol. Biomarkers Prev, 17:12 (2008), 3482–3489 | DOI

[14] G. Dianov, A. Price, T. Lindahl, “Generation of single-nucleotide repair patches following excision of uracil residues from DNA”, Mol. Cell. Biol, 12:4 (1992), 1605–1612 | DOI

[15] G. Frosina, P. Fortini, O. Rossi, F. Carrozzino, G. Raspaglio, L. S. Cox, D. P. Lane, A. Abbondandolo, E. Dogliotti, “Two pathways for base excision repair in mammalian cells”, J. Biol. Chem., 271:16 (1996), 9573–9578 | DOI

[16] J. M. Pascal, “The comings and goings of PARP-1 in response to DNA damage”, DNA Repair, 71 (2018), 177–182 | DOI

[17] B. A. Gibson, W. L. Kraus, “New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs”, Nat. Rev. Mol. Cell Biol, 13:7 (2012), 411–424 | DOI

[18] W. L. Kraus, M. O. Hottiger, “PARP-1 and gene regulation: Progress and puzzles”, Molecular Aspects of Medicine, 34:6 (2013), 1109–1123 | DOI

[19] M. Waldman, V. Nudelman, A. Shainberg, N. G. Abraham, R. Kornwoski, D. Aravot, M. Arad, E. Hochhauser, “PARP-1 inhibition protects the diabetic heart through activation of SIRT1-PGC-1$\alpha$ axis”, Exp. Cell Res., 373:1 (2018), 112–118 | DOI

[20] Y. Wang, W. Luo, Y. Wang, “PARP-1 and its associated nucleases in DNA damage response”, DNA Repair, 81 (2019), 102651 | DOI

[21] C. J. Whitehouse, Taylor R.M, A. Thistlethwaite, H. Zhang, F. Karimi-Busheri, D. D. Lasko, M. Weinfeld, K. W. Caldecott, “XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair”, Cell, 104:1 (2001), 107–117 | DOI | MR

[22] M. V. Sukhanova, S. Abrakhi, V. Joshi, D. Pastre, M. M. Kutuzov, R. O. Anarbaev, P. A. Curmi, L. Hamon, O. I. Lavrik, “Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high resolution AFM imaging”, Nucleic Acids Res., 44:6 (2016), e60 | DOI | MR

[23] F. Simonin, O. Poch, M. Delarue, G. de Murcia, “Identification of potential active-site residues in the human poly(ADP-ribose) polymerase”, J. Biol. Chem., 268:12 (1993), 8529–8535 | DOI

[24] N. A.W. Bell, P. J. Haynes, K. Brunner, T. M. de Oliveira, M. M. Flocco, B. W. Hoogenboom, J. E. Molloy, “Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization”, Sci. Adv., 7:33 (2021) | DOI

[25] R. E. London, “The structural basis of XRCC1-mediated DNA repair”, DNA Repair, 30 (2015), 90–103 | DOI

[26] R. D. Aceytuno, C. G. Piett, Z. Havali-Shahriari, R. A. Edwards, M. Rey, R. Ye, F. Javed, S. Fang, R. Mani, M. Weinfeld et al, “Structural and functional characterization of the PNKP-XRCC4-LigIV DNA repair complex”, Nucleic Acids Res., 45:10 (2017), 6238–6251 | DOI

[27] P. Srivastava, A. Sarma, C. M. Chaturvedi, “Targeting DNA repair with PNKP inhibition sensitizes radioresistant prostate cancer cells to high LET radiation”, PLOS ONE, 13:1 (2018), e0190516 | DOI

[28] N. A. Moor, I. A. Vasil'eva, R. O. Anarbaev, A. A. Antson, O. I. Lavrik, “Quantitative characterization of protein-protein complexes involved in base excision DNA repair”, Nucleic Acids Res, 43:12 (2015), 6009–6022 | DOI

[29] A. Kumar, A. J. Reed, W. J. Zahurancik, S. M. Daskalova, S. M. Hecht, Z. Suo, “Interlocking activities of DNA polymerase $\beta$ in the base excision repair pathway”, Proc. Natl. Acad. Sci., 119:10 (2022), e2118940119 | DOI

[30] B. A. Sokhansanj, G. R. Rodrigue, J. P. Fitch, D. M. Wilson III, “A quantitative model of human DNA base excision repair. I. Mechanistic insights”, Nucleic Acids Res., 30:8 (2002), 1817–1825 | DOI

[31] E. Cotner-Gohara, I. K. Kim, M. Hammel, J. A. Tainer, A. E. Tomkinson, T. Ellenberger, “Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA bound states”, Biochemistry, 49:29 (2010), 6165–6176 | DOI

[32] M. Hammel, I. Rashid, A. Sverzhinsky, Y. Pourfarjam, M. S. Tsai, T. Ellenberger, J. M. Pascal, I. K. Kim, J. A. Tainer, A. E. Tomkinson, “An atypical BRCT-BRCT interaction with the XRCC1 scaffold protein compacts human DNA Ligase III$\alpha$ within a flexible DNA repair complex”, Nucleic Acids Res, 49:1 (2021), 306–321 | DOI

[33] J. R. McNally, P. J. O'Brien, “Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I”, J. Biol. Chem., 292:38 (2017), 15870–15879 | DOI

[34] J. F. Ward, “Nature of Lesions Formed by Ionizing Radiation”, DNA Damage and Repair, v. 2, DNA Repair in Higher Eukaryotes, eds. J. A. Nickoloff, M. F. Hoekstra, Humana Press, Totowa, NJ, 1998, 65–84 | DOI

[35] C. A. Koczor, K. M. Saville, J. F. Andrews, J. Clark, Q. Fang, J. Li, R. Q. Al-Rahahleh, Md Ibrahim, S. McClellan, M. V. Makarov, M. E. Migaud, R. W. Sobol, “Temporal dynamics of base excision/single-strand break repair protein complex assembly/disassembly are modulated by the PARP/NAD(+)/SIRT6 axis”, Cell Rep., 37:5 (2021), 109917 | DOI

[36] M. J. Howard, J. K. Horton, M. L. Zhao, S. H. Wilson, “Lysines in the lyase active site of DNA polymerase $\beta$ destabilize nonspecific DNA binding, facilitating searching and DNA gap recognition”, J. Biol. Chem., 295:34 (2020), 12181–12187 | DOI