Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a6, author = {R. K. Tetuev and N. N. Nazipova}, title = {Statistical model for predicting {TALEN-DNA} binding sites based on moving average}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {621--645}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a6/} }
TY - JOUR AU - R. K. Tetuev AU - N. N. Nazipova TI - Statistical model for predicting TALEN-DNA binding sites based on moving average JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 621 EP - 645 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a6/ LA - ru ID - MBB_2023_18_2_a6 ER -
%0 Journal Article %A R. K. Tetuev %A N. N. Nazipova %T Statistical model for predicting TALEN-DNA binding sites based on moving average %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 621-645 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a6/ %G ru %F MBB_2023_18_2_a6
R. K. Tetuev; N. N. Nazipova. Statistical model for predicting TALEN-DNA binding sites based on moving average. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 621-645. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a6/
[1] M. Bibikova, M. Golic, K. G. Golic, D. Carroll, “Targeted Chromosomal Cleavage and Mu tagenesis in Drosophila Using Zinc-Finger Nucleases”, Genetics, 161:3 (2002), 1169–1175 | DOI
[2] W. Qasim, H. Zhan, S. Samarasinghe, S. Adams, P. Amrolia, S. Stafford, K. Butler, C. Rivat, G. Wright, K. Somana et al, “Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells”, Science Translational Medicine, 9 (2017), eaaj2013 | DOI
[3] J. Menz, D. Modrzejewski, F. Hartung, R. Wilhelm, T. Sprink, “Genome edited crops touch the market: a view on the global development and regulatory environment”, Front. Plant Sci., 11 (2020), 586027 | DOI
[4] A. Pickar-Oliver, C. A. Gersbach, “The next generation of CRISPR-Cas technologies and applications”, Nat. Rev. Mol. Cell Biol., 20 (2019), 490–507 | DOI
[5] B. Zhang, “CRISPR/Cas gene therapy”, J. Cell Physiol., 236 (2021), 2459–2481 | DOI
[6] M. Saifaldeen, D. E. Al-Ansari, D. Ramotar, M. Aouida, “CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering”, Cells, 9:11 (2020) | DOI
[7] H. Gao, X. Wu, J. Chai, Z. Han, “Crystal structure of a TALE protein reveals an extended N terminal DNA binding region”, Cell Res., 22 (2012), 1716–1720 | DOI
[8] M. Yuan, Y. Ke, R. Huang, L. Ma, Z. Yang, Z. Chu, J. Xiao, X. Li, S. Wang, “A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria”, eLife, 5 (2016), e19605 | DOI
[9] M. J. Moscou, A. J. Bogdanove, “A simple cipher governs DNA recognition by TAL effec tors”, Science, 326 (2009), 1501 | DOI
[10] J. Yang, Y. Zhang, P. Yuan, Y. Zhou, C. Cai, Q. Ren, D. Wen, C. Chu, H. Qi, W. Wei, “Complete decoding of TAL effectors for DNA recognition”, Cell Res, 24 (2014), 628–631 | DOI
[11] J. Miller, L. Zhang, D. F. Xia, J. J. Campo, I. V. Ankoudinova, D. Y. Guschin, J. E. Babiarz, X. Meng, S. J. Hinkley, S. C. Lam, “Improved specificity of TALE-based genome editing us ing an expanded RVD repertoire”, Nat. Methods, 12 (2015), 465–471 | DOI
[12] A. N.S. Mak, P. Bradley, R. A. Cernadas, A. J. Bogdanove, B. L. Stoddard, “The crystal struc ture of TAL effector PthXo1 bound to its DNA target”, Science, 335 (2012), 716–719 | DOI
[13] D. Deng, C. Yan, X. Pan, M. Mahfouz, J. Wang, J. K. Zhu, Y. Shi, N. Yan, “Structural basis for sequence-specific recognition of DNA by TAL effectors”, Science, 335 (2012), 720–723 | DOI
[14] J. Streubel, C. Blucher, A. Boch, J. Landgraf, “TAL effector RVD specificities and efficien cies”, Nat. Biotechnol., 30 (2012), 593–595 | DOI
[15] S. Becker, J. Boch, “TALE and TALEN genome editing technologies”, Gene and Genome Editing, 2 (2021), 100007 | DOI
[16] J. Boch, H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, U. Bonas, “Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors”, Science, 326:5959 (2009), 1509–1512 | DOI
[17] D. Hockemeyer, H. Wang, S. Kiani, C. S. Lai, Q. Gao, J. P. Cassady, G. J. Cost, L. Zhang, Y. Santiago, J. C. Miller et al, “Genetic engineering of human pluripotent cells using TALE nucleases”, Nat. Biotechnol, 29 (2011), 731–734 | DOI
[18] J. P. Guilinger, V. Pattanayak, D. Reyon, S. Q. Tsai, J. D. Sander, J. K. Joung, D. R. Liu, “Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity”, Nat. Methods, 11:4 (2014), 429–435 | DOI
[19] E. L. Doyle, N. J. Booher, D. S. Standage, D. F. Voytas, V. P. Brendel, J. K. VanDyk, A. J. Bogdanove, “TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector de sign and target prediction”, Nucleic Acids Res., 40 (2012), W117–W122 | DOI
[20] J. Grau, J. Boch, S. Posch, “TALENoffer: genome-wide TALEN off-target prediction”, Bio informatics, 29 (2013), 2931–2932 | DOI
[21] L. Cong, R. Zhou, Y. C. Kuo, M. Cunniff, F. Zhang, “Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains”, Nat. Commun., 3 (2012), 968 | DOI
[22] A. Richter, J. Streubel, C. Blucher, B. Szurek, M. Reschke, J. Grau, J. Boch, “A TAL effec tor repeat architecture for frameshift binding”, Nat. Commun., 5 (2014), 3447 | DOI
[23] T. Sakuma, H. Ochiai, T. Kaneko, T. Mashimo, D. Tokumasu, Y. Sakane, K. Suzuki, T. Miyamoto, N. Sakamoto, S. Matsuura, T. Yamamoto, “Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity”, Sci. Rep., 3 (2013), 3379 | DOI | MR
[24] T. Sakuma, T. Yamamoto, “Engineering Customized TALENs Using the Platinum Gate TALEN Kit”, Methods Mol. Biol., 1338 (2016), 61–70 | DOI
[25] J. Xue, Z. Lu, W. Liu, S. Wang, D. Lu, X. Wang, X. He, “The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology”, Sci. China Life Sci., 64:1 (2021), 51–65 | DOI
[26] J. Streubel, C. Blucher, A. Landgraf, J. Boch, “TAL effector RVD specificities and efficiencies”, Nat. Biotechnol., 30 (2012), 593–595 | DOI
[27] T. Cermak, E. L. Doyle, M. Christian, L. Wang, Y. Zhang, C. Schmidt, J. A. Baller, N. V. Somia, A. J. Bogdanove, D. F. Voytas, “Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting”, Nucleic Acids Res, 39 (2011), e82 | DOI
[28] P. J. Balwierz, P. Carninci, C. O. Daub, J. Kawai, Y. Hayashizaki, W. Van Belle, C. Beisel, E. van Nimwegen, “Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data”, Genome Biol., 10 (2009), R79 | DOI
[29] D. Bradley, G. Roth, “Adaptive Thresholding using the Integral Image”, Journal of Graphics GPU and Game Tools, 12 (2007), 13–21 | DOI
[30] M. Umer, Z. Herceg, “Deciphering the epigenetic code: an overview of DNA methylation analysis methods”, Antioxid Redox Signal, 18 (2013), 1972–1986 | DOI
[31] K. Jabbari, G. Bernardi, “Cytosine methylation and CpG, TpG (CpA) and TpA frequencies”, Gene, 333 (2004), 143–149 | DOI
[32] J. G. Herman, J. R. Graff, S. Myohanen, B. D. Nelkin, S. B. Baylin, “Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands”, Proc. Natl. Acad. Sci. U.S.A., 93:18 (1996), 9821–9826 | DOI
[33] R. K. Tetuev, M. M. Olshevets, B. Erman, C. Atilgan, “Model ‘`slomannaya molniya": predskazanie saitov svyazyvaniya TALEN’ov na osnove skolzyaschego srednego”, Doklady mezhdunarodnoi konferentsii «Matematicheskaya biologiya i bioinformatika», v. 6, ed. Lakhno V.D., Puschino, 2016, 70–71
[34] L. Li, M. J. Piatek, A. Atef, A. Piatek, A. Wibowo, X. Fang, J. S.M. Sabir, J. K. Zhu, M. M. Mahfouz, “Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification”, Plant Mol. Biol., 78 (2012), 407–416 | DOI
[35] E. J. Fine, T. J. Cradick, C. L. Zhao, Y. Lin, G. Bao, “An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage”, Nucleic Acids Res, 42 (2013), e42 | DOI
[36] F. Heigwer, G. Kerr, N. Walther, K. Glaeser, O. Pelz, M. Breinig, M. Boutros, “E-TALEN: a web tool to design TALENs for genome engineering”, Nucleic Acids Res., 41 (2013), e190 | DOI
[37] K. L. Neff, D. P. Argue, A. C. Ma, H. B. Lee, K. J. Clark, S. C. Ekker, “Mojo Hand, a TALEN design tool for genome editing applications”, BMC Bioinform, 14 (2013), 1 | DOI
[38] T. G. Montague, J. M. Cruz, J. A. Gagnon, G. M. Church, E. Valen, “CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing”, Nucleic Acids Res., 42 (2014), W401–W407 | DOI
[39] T. L. Jensen, C. R. Gotzsche, D. P.D. Woldbye, “Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord”, Front. Mol. Neurosci., 14 (2021), 695937 | DOI
[40] J. Kaiser, “A gentler way to tweak genes: Epigenome editing”, Science, 376 (2022), 1034–1035 | DOI
[41] R. Margueron, D. Reinberg, “Chromatin structure and the inheritance of epigenetic information”, Nat. Rev. Genet., 11 (2010), 285–296 | DOI
[42] C. D. Allis, T. Jenuwein, “The molecular hallmarks of epigenetic control”, Nat. Rev. Genet., 17 (2016), 487–500 | DOI
[43] N. N. Nazipova, “Raznoobrazie nekodiruyuschikh RNK v genomakh eukariot”, Mat. biologiya i bioinformatika, 16:2 (2021), 256–298 | DOI
[44] P. R. Cook, “A model for all genomes: The role of transcription factories”, J. Mol. Biol., 395 (2010), 1–10 | DOI
[45] J. Ueda, T. Yamazaki, H. Funakoshi, “Toward the Development of Epigenome Editing Based Therapeutics: Potentials and Challenges”, International Journal of Molecular Sciences, 24:5 (2023), 4778 | DOI
[46] M. P. Baker, H. M. Reynolds, B. Lumicisi, C. J. Bryson, “Immunogenicity of protein therapeutics: The key causes, consequences and challenges”, Self/Nonself, 1 (2010), 314–322 | DOI
[47] M. L. de Groote, P. J. Verschure, M. G. Rots, “Epigenetic Editing: Targeted rewriting of epigenetic marks to modulate expression of selected target genes”, Nucleic Acids Res., 40 (2012), 10596–10613 | DOI
[48] Y. Lei, Y. H. Huang, M. A. Goodell, “DNA methylation and de-methylation using hybrid site-targeting proteins”, Genome Biol., 19 (2019), 187 | DOI
[49] B. Y. Mok, M. H. de Moraes, J. Zeng, D. E. Bosch, A. V. Kotrys, A. Raguram, F. Hsu, M. C. Radey, S. B. Peterson, V. K. Mootha et al, “A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing”, Nature, 583 (2020), 631–637 | DOI
[50] B. Y. Mok, A. V. Kotrys, A. Raguram, T. P. Huang, V. K. Mootha, D. R. Liu, “CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA”, Nat. Biotechnol., 40 (2022), 1378–1387 | DOI
[51] B. C. Kang, S. J. Bae, S. Lee, J. S. Lee, A. Kim, H. Lee, G. Baek, H. Seo, J. Kim, J. S. Kim, “Chloroplast and mitochondrial DNA editing in plants”, Nat. Plants, 7 (2021), 899–905 | DOI
[52] S. Jain, S. Shukla, C. Yang, M. Zhang, Z. Fatma, M. Lingamaneni, S. Abesteh, S. T. Lane, X. Xiong, Y. Wang et al, “TALEN outperforms Cas9 in editing heterochromatin target sites”, Nat. Commun., 12 (2021), 606–610 | DOI
[53] A. Boyne, M. Yang, S. Pulicani, M. Feola, D. Tkach, R. Hong, A. Duclert, P. Duchateau, A. Juillerat, “Efficient multitool/multiplex gene engineering with TALE-BE”, Front. Bioeng. Biotechnol., 10 (2022), 1033669 | DOI