Statistical model for predicting TALEN-DNA binding sites based on moving average
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 621-645.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a new approach to the in-silico prediction of any possible DNA binding sites for the user-defined artificial TALENs. This approach based on the exponential moving average model and developed as an online service TANDIS. The direct validation of our prediction model based on the direct matching with the known results of the certain in-vitro experiments, while for the verification of its accuracy we use comparative analysis against other similar popular services like TALE-NT and TALENoffer. So thus, we have found out that the exponential moving average model brings very good results comparable with those of the Markov chain model used in TALENoffer, but TANDIS can do it much more easily because its model is much simpler. The TALE-NT prediction is even faster than ours for it has an utmost simple position-independent scoring system and drastically simplified filtering rules for the case of paired TALEs, which makes however, on the other hand, the results of such TALE-NT 's prediction much less competitive. Besides being the compromise between accuracy and efficiency, the exponential moving average model has only five parameters, so in future, it could be easily used for more intense prediction, and probably later, it can be used to cast some light on our understanding of real physical principles of the attractive interaction between a certain TALE and a random DNA site.
@article{MBB_2023_18_2_a6,
     author = {R. K. Tetuev and N. N. Nazipova},
     title = {Statistical model for predicting {TALEN-DNA} binding sites based on moving average},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {621--645},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a6/}
}
TY  - JOUR
AU  - R. K. Tetuev
AU  - N. N. Nazipova
TI  - Statistical model for predicting TALEN-DNA binding sites based on moving average
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 621
EP  - 645
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a6/
LA  - ru
ID  - MBB_2023_18_2_a6
ER  - 
%0 Journal Article
%A R. K. Tetuev
%A N. N. Nazipova
%T Statistical model for predicting TALEN-DNA binding sites based on moving average
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 621-645
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a6/
%G ru
%F MBB_2023_18_2_a6
R. K. Tetuev; N. N. Nazipova. Statistical model for predicting TALEN-DNA binding sites based on moving average. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 621-645. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a6/

[1] M. Bibikova, M. Golic, K. G. Golic, D. Carroll, “Targeted Chromosomal Cleavage and Mu tagenesis in Drosophila Using Zinc-Finger Nucleases”, Genetics, 161:3 (2002), 1169–1175 | DOI

[2] W. Qasim, H. Zhan, S. Samarasinghe, S. Adams, P. Amrolia, S. Stafford, K. Butler, C. Rivat, G. Wright, K. Somana et al, “Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells”, Science Translational Medicine, 9 (2017), eaaj2013 | DOI

[3] J. Menz, D. Modrzejewski, F. Hartung, R. Wilhelm, T. Sprink, “Genome edited crops touch the market: a view on the global development and regulatory environment”, Front. Plant Sci., 11 (2020), 586027 | DOI

[4] A. Pickar-Oliver, C. A. Gersbach, “The next generation of CRISPR-Cas technologies and applications”, Nat. Rev. Mol. Cell Biol., 20 (2019), 490–507 | DOI

[5] B. Zhang, “CRISPR/Cas gene therapy”, J. Cell Physiol., 236 (2021), 2459–2481 | DOI

[6] M. Saifaldeen, D. E. Al-Ansari, D. Ramotar, M. Aouida, “CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering”, Cells, 9:11 (2020) | DOI

[7] H. Gao, X. Wu, J. Chai, Z. Han, “Crystal structure of a TALE protein reveals an extended N terminal DNA binding region”, Cell Res., 22 (2012), 1716–1720 | DOI

[8] M. Yuan, Y. Ke, R. Huang, L. Ma, Z. Yang, Z. Chu, J. Xiao, X. Li, S. Wang, “A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria”, eLife, 5 (2016), e19605 | DOI

[9] M. J. Moscou, A. J. Bogdanove, “A simple cipher governs DNA recognition by TAL effec tors”, Science, 326 (2009), 1501 | DOI

[10] J. Yang, Y. Zhang, P. Yuan, Y. Zhou, C. Cai, Q. Ren, D. Wen, C. Chu, H. Qi, W. Wei, “Complete decoding of TAL effectors for DNA recognition”, Cell Res, 24 (2014), 628–631 | DOI

[11] J. Miller, L. Zhang, D. F. Xia, J. J. Campo, I. V. Ankoudinova, D. Y. Guschin, J. E. Babiarz, X. Meng, S. J. Hinkley, S. C. Lam, “Improved specificity of TALE-based genome editing us ing an expanded RVD repertoire”, Nat. Methods, 12 (2015), 465–471 | DOI

[12] A. N.S. Mak, P. Bradley, R. A. Cernadas, A. J. Bogdanove, B. L. Stoddard, “The crystal struc ture of TAL effector PthXo1 bound to its DNA target”, Science, 335 (2012), 716–719 | DOI

[13] D. Deng, C. Yan, X. Pan, M. Mahfouz, J. Wang, J. K. Zhu, Y. Shi, N. Yan, “Structural basis for sequence-specific recognition of DNA by TAL effectors”, Science, 335 (2012), 720–723 | DOI

[14] J. Streubel, C. Blucher, A. Boch, J. Landgraf, “TAL effector RVD specificities and efficien cies”, Nat. Biotechnol., 30 (2012), 593–595 | DOI

[15] S. Becker, J. Boch, “TALE and TALEN genome editing technologies”, Gene and Genome Editing, 2 (2021), 100007 | DOI

[16] J. Boch, H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, U. Bonas, “Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors”, Science, 326:5959 (2009), 1509–1512 | DOI

[17] D. Hockemeyer, H. Wang, S. Kiani, C. S. Lai, Q. Gao, J. P. Cassady, G. J. Cost, L. Zhang, Y. Santiago, J. C. Miller et al, “Genetic engineering of human pluripotent cells using TALE nucleases”, Nat. Biotechnol, 29 (2011), 731–734 | DOI

[18] J. P. Guilinger, V. Pattanayak, D. Reyon, S. Q. Tsai, J. D. Sander, J. K. Joung, D. R. Liu, “Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity”, Nat. Methods, 11:4 (2014), 429–435 | DOI

[19] E. L. Doyle, N. J. Booher, D. S. Standage, D. F. Voytas, V. P. Brendel, J. K. VanDyk, A. J. Bogdanove, “TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector de sign and target prediction”, Nucleic Acids Res., 40 (2012), W117–W122 | DOI

[20] J. Grau, J. Boch, S. Posch, “TALENoffer: genome-wide TALEN off-target prediction”, Bio informatics, 29 (2013), 2931–2932 | DOI

[21] L. Cong, R. Zhou, Y. C. Kuo, M. Cunniff, F. Zhang, “Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains”, Nat. Commun., 3 (2012), 968 | DOI

[22] A. Richter, J. Streubel, C. Blucher, B. Szurek, M. Reschke, J. Grau, J. Boch, “A TAL effec tor repeat architecture for frameshift binding”, Nat. Commun., 5 (2014), 3447 | DOI

[23] T. Sakuma, H. Ochiai, T. Kaneko, T. Mashimo, D. Tokumasu, Y. Sakane, K. Suzuki, T. Miyamoto, N. Sakamoto, S. Matsuura, T. Yamamoto, “Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity”, Sci. Rep., 3 (2013), 3379 | DOI | MR

[24] T. Sakuma, T. Yamamoto, “Engineering Customized TALENs Using the Platinum Gate TALEN Kit”, Methods Mol. Biol., 1338 (2016), 61–70 | DOI

[25] J. Xue, Z. Lu, W. Liu, S. Wang, D. Lu, X. Wang, X. He, “The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology”, Sci. China Life Sci., 64:1 (2021), 51–65 | DOI

[26] J. Streubel, C. Blucher, A. Landgraf, J. Boch, “TAL effector RVD specificities and efficiencies”, Nat. Biotechnol., 30 (2012), 593–595 | DOI

[27] T. Cermak, E. L. Doyle, M. Christian, L. Wang, Y. Zhang, C. Schmidt, J. A. Baller, N. V. Somia, A. J. Bogdanove, D. F. Voytas, “Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting”, Nucleic Acids Res, 39 (2011), e82 | DOI

[28] P. J. Balwierz, P. Carninci, C. O. Daub, J. Kawai, Y. Hayashizaki, W. Van Belle, C. Beisel, E. van Nimwegen, “Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data”, Genome Biol., 10 (2009), R79 | DOI

[29] D. Bradley, G. Roth, “Adaptive Thresholding using the Integral Image”, Journal of Graphics GPU and Game Tools, 12 (2007), 13–21 | DOI

[30] M. Umer, Z. Herceg, “Deciphering the epigenetic code: an overview of DNA methylation analysis methods”, Antioxid Redox Signal, 18 (2013), 1972–1986 | DOI

[31] K. Jabbari, G. Bernardi, “Cytosine methylation and CpG, TpG (CpA) and TpA frequencies”, Gene, 333 (2004), 143–149 | DOI

[32] J. G. Herman, J. R. Graff, S. Myohanen, B. D. Nelkin, S. B. Baylin, “Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands”, Proc. Natl. Acad. Sci. U.S.A., 93:18 (1996), 9821–9826 | DOI

[33] R. K. Tetuev, M. M. Olshevets, B. Erman, C. Atilgan, “Model ‘`slomannaya molniya": predskazanie saitov svyazyvaniya TALEN’ov na osnove skolzyaschego srednego”, Doklady mezhdunarodnoi konferentsii «Matematicheskaya biologiya i bioinformatika», v. 6, ed. Lakhno V.D., Puschino, 2016, 70–71

[34] L. Li, M. J. Piatek, A. Atef, A. Piatek, A. Wibowo, X. Fang, J. S.M. Sabir, J. K. Zhu, M. M. Mahfouz, “Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification”, Plant Mol. Biol., 78 (2012), 407–416 | DOI

[35] E. J. Fine, T. J. Cradick, C. L. Zhao, Y. Lin, G. Bao, “An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage”, Nucleic Acids Res, 42 (2013), e42 | DOI

[36] F. Heigwer, G. Kerr, N. Walther, K. Glaeser, O. Pelz, M. Breinig, M. Boutros, “E-TALEN: a web tool to design TALENs for genome engineering”, Nucleic Acids Res., 41 (2013), e190 | DOI

[37] K. L. Neff, D. P. Argue, A. C. Ma, H. B. Lee, K. J. Clark, S. C. Ekker, “Mojo Hand, a TALEN design tool for genome editing applications”, BMC Bioinform, 14 (2013), 1 | DOI

[38] T. G. Montague, J. M. Cruz, J. A. Gagnon, G. M. Church, E. Valen, “CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing”, Nucleic Acids Res., 42 (2014), W401–W407 | DOI

[39] T. L. Jensen, C. R. Gotzsche, D. P.D. Woldbye, “Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord”, Front. Mol. Neurosci., 14 (2021), 695937 | DOI

[40] J. Kaiser, “A gentler way to tweak genes: Epigenome editing”, Science, 376 (2022), 1034–1035 | DOI

[41] R. Margueron, D. Reinberg, “Chromatin structure and the inheritance of epigenetic information”, Nat. Rev. Genet., 11 (2010), 285–296 | DOI

[42] C. D. Allis, T. Jenuwein, “The molecular hallmarks of epigenetic control”, Nat. Rev. Genet., 17 (2016), 487–500 | DOI

[43] N. N. Nazipova, “Raznoobrazie nekodiruyuschikh RNK v genomakh eukariot”, Mat. biologiya i bioinformatika, 16:2 (2021), 256–298 | DOI

[44] P. R. Cook, “A model for all genomes: The role of transcription factories”, J. Mol. Biol., 395 (2010), 1–10 | DOI

[45] J. Ueda, T. Yamazaki, H. Funakoshi, “Toward the Development of Epigenome Editing Based Therapeutics: Potentials and Challenges”, International Journal of Molecular Sciences, 24:5 (2023), 4778 | DOI

[46] M. P. Baker, H. M. Reynolds, B. Lumicisi, C. J. Bryson, “Immunogenicity of protein therapeutics: The key causes, consequences and challenges”, Self/Nonself, 1 (2010), 314–322 | DOI

[47] M. L. de Groote, P. J. Verschure, M. G. Rots, “Epigenetic Editing: Targeted rewriting of epigenetic marks to modulate expression of selected target genes”, Nucleic Acids Res., 40 (2012), 10596–10613 | DOI

[48] Y. Lei, Y. H. Huang, M. A. Goodell, “DNA methylation and de-methylation using hybrid site-targeting proteins”, Genome Biol., 19 (2019), 187 | DOI

[49] B. Y. Mok, M. H. de Moraes, J. Zeng, D. E. Bosch, A. V. Kotrys, A. Raguram, F. Hsu, M. C. Radey, S. B. Peterson, V. K. Mootha et al, “A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing”, Nature, 583 (2020), 631–637 | DOI

[50] B. Y. Mok, A. V. Kotrys, A. Raguram, T. P. Huang, V. K. Mootha, D. R. Liu, “CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA”, Nat. Biotechnol., 40 (2022), 1378–1387 | DOI

[51] B. C. Kang, S. J. Bae, S. Lee, J. S. Lee, A. Kim, H. Lee, G. Baek, H. Seo, J. Kim, J. S. Kim, “Chloroplast and mitochondrial DNA editing in plants”, Nat. Plants, 7 (2021), 899–905 | DOI

[52] S. Jain, S. Shukla, C. Yang, M. Zhang, Z. Fatma, M. Lingamaneni, S. Abesteh, S. T. Lane, X. Xiong, Y. Wang et al, “TALEN outperforms Cas9 in editing heterochromatin target sites”, Nat. Commun., 12 (2021), 606–610 | DOI

[53] A. Boyne, M. Yang, S. Pulicani, M. Feola, D. Tkach, R. Hong, A. Duclert, P. Duchateau, A. Juillerat, “Efficient multitool/multiplex gene engineering with TALE-BE”, Front. Bioeng. Biotechnol., 10 (2022), 1033669 | DOI