Repeat structure in \emph{Salmonella} genomes
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 602-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

Salmonella is a genus of gram-negative, facultative and non-spore-forming anaerobic bacteria. The genus includes two species: S. bongori and S. enterica. All Salmonella, which are pathogenic to humans and animals, belong to the species S. enterica. It includes seven subspecies, which includes more than 2500 serotypes. According to global statistics, they cause about 2.8 billion cases of diarrheal diseases annually, and the mortality rate reaches more than 300000 cases. S. enterica spp strains that have acquired multidrug resistance to antibiotics have become especially dangerous. Against the backdrop of this global problem, a detailed study of the complete genomes of various representatives of the genus Salmonella becomes relevant. Repeats play an important role in the regulation of basic genetic processes during the life cycle and evolution. The work examines various manifestations of repetition in the genomes of S. enterica. Taking into account common fragments of different genomes serves as the basis for the formation of a matrix of pairwise relative complexity, which is used in constructing a phylogenetic tree. Long repeats within individual genomes typically correspond to large individual duplications. The main attention is paid to local structural regularities, most of which are represented by tandem repeats. Of significant interest are multivalued repeats, such as tandem repeats forming a palindrome, repeats with regular substitutions or complex monomer structure.
@article{MBB_2023_18_2_a5,
     author = {L. A. Miroshnichenko and N. A. Arefieva and Yu. P. Dzhioev and V. D. Gusev and A. Yu. Borisenko and S. V. Erdyneev and Yu. S. Bukin},
     title = {Repeat structure in {\emph{Salmonella}} genomes},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {602--620},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a5/}
}
TY  - JOUR
AU  - L. A. Miroshnichenko
AU  - N. A. Arefieva
AU  - Yu. P. Dzhioev
AU  - V. D. Gusev
AU  - A. Yu. Borisenko
AU  - S. V. Erdyneev
AU  - Yu. S. Bukin
TI  - Repeat structure in \emph{Salmonella} genomes
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 602
EP  - 620
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a5/
LA  - ru
ID  - MBB_2023_18_2_a5
ER  - 
%0 Journal Article
%A L. A. Miroshnichenko
%A N. A. Arefieva
%A Yu. P. Dzhioev
%A V. D. Gusev
%A A. Yu. Borisenko
%A S. V. Erdyneev
%A Yu. S. Bukin
%T Repeat structure in \emph{Salmonella} genomes
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 602-620
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a5/
%G ru
%F MBB_2023_18_2_a5
L. A. Miroshnichenko; N. A. Arefieva; Yu. P. Dzhioev; V. D. Gusev; A. Yu. Borisenko; S. V. Erdyneev; Yu. S. Bukin. Repeat structure in \emph{Salmonella} genomes. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 602-620. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a5/

[1] M. Y. Popoff, J. Bockemuh, F. W. Brenner, “Supplement 1998 (no. 42) to the Kauffmann White scheme”, Res. Microbiol, 151:1 (2000), 63–65 | DOI

[2] F. W. Brenner, R. G. Villar, F. J. Angulo, R. Tauxe, B. Swaminathan, “Salmonella nomenclature”, Clin. Microbiol, 38:7 (2000), 2465–2467 | DOI

[3] L. A. Knodler, J. R. Elfenbein, “Salmonella enterica”, Trends Microbiol, 27:11 (2019), 964–965 | DOI

[4] Ch. R. Braden, “Salmonella enterica serotype Enteritidis and eggs: a national epidemic in the United States”, Clin. Infect. Dis, 43:4 (2006), 512–517 | DOI

[5] W. Q. Alali, S. Thakur, R. D. Berghaus, M. P. Martin, W. A. Gebreyes, “Prevalence and distribution of Salmonella in organic and conventional broiler poultry farms”, Foodborne Pathog. Dis, 7:11 (2010), 1363–1371 | DOI

[6] R. Johnson, E. Mylona, G. Frankel, “Typhoidal Salmonella. Distinctive virulence factors and pathogenesis”, Cell Microbiol., 20:9 (2018), e12939 | DOI

[7] J. A. Crump, S. P. Luby, E. D. Mintz, “The global burden of typhoid fever”, Bull. World Health Organ, 82:5 (2004), 346–353

[8] G. C. Buckle, C. L. Walker, R. E. Black, “Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010”, J. Glob. Health, 2:1 (2012), 010401 | DOI

[9] J. Chen, J. E. Long, K. Vannice, T. Shewchuk, S. Kumar, S. A. Duncan, A. K.M. Zaidi, “Taking on Typhoid: Eliminating Typhoid Fever as a Global Health Problem”, Open Forum Infect Dis., 10:1 (2023), S74–S81 | DOI

[10] M. M. Aljeldah, “Antimicrobial Resistance and Its Spread Is a Global Threat”, Antibiotics, 11:8 (2022), 1082 | DOI

[11] Y. J. Chang, C. L. Chen, H. P. Yang, Chiu C. H. Prevalence, Serotypes, “and Antimicrobial Resistance Patterns of Non-Typhoid Salmonella in Food in Northern Taiwan”, Pathogens, 11:6 (2022), 705 | DOI

[12] M. A. Salam, M. Y. Al-Amin, M. T. Salam, J. S. Pawar, N. Akhter, A. A. Rabaan, M. A.A. Alqumber, “Antimicrobial Resistance: A Growing Serious Threat for Global Public Health”, Healthcare, 11:13 (2023), 1946 | DOI

[13] J. O'Neill, Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations / the Review on Antimicrobial Resistance chaired by Jim O'Neill, 2014 (accessed 21.12.2023) https://wellcomecollection.org/works/rdpck35v

[14] F. M.E. Wagenlehner, F. Dittmar, “Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis”, Eur. Urol., 82:6 (2022), 658 | DOI

[15] Y. A. Adebisi, A. J. Alaran, M. Okereke, G. I. Oke, O. A. Amos, O. C. Olaoye, I. Oladunjoye, A. Y. Olanrewaju, N. A. Ukor, D. E. Lucero-Prisno, “COVID-19 and Antimicrobial Resistance: A Review”, Infect. Dis. (Auckl), 14 (2021) | DOI

[16] K. Lewis, “The science of antibiotic discovery”, Cell, 181:1 (2020), 29–45 | DOI

[17] N. Dheman, N. Mahoney, E. M. Cox, J. J. Farley, T. Amini, M. L. Lanthier, “An Analysis of Antibacterial Drug Development Trends in the United States, 1980–2019”, Clin. Infect. Dis., 73:11 (2021), e4444–e4450 | DOI

[18] T. Luong, A. C. Salabarria, D. R. Roach, Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going?, Clin. Ther., 42:9 (2020), 1659–1680 | DOI

[19] G. F. Hatfull, R. M. Dedrick, R. T. Schooley, “Phage Therapy for Antibiotic-Resistant Bacterial Infections”, Annu. Rev. Med, 73 (2022), 197–211 | DOI

[20] A. Biswas, J. N. Gagnon, S. J.J. Brouns, P. C. Fineran, C. M. Brown, “CRISPRTarget: bioinformatic prediction and analysis of crRNA targets”, RNA Biol, 10:5 (2013), 817–827 | DOI

[21] R. Barrangou, L. A. Marraffini, “CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity”, Mol. Cell, 54:2 (2014), 234–244 | DOI

[22] P. A. Nazarov, “Alternativy antibiotikam: liticheskie fermenty bakteriofagov i fagovaya terapiya”, Vestnik Rossiiskogo gosudarstvennogo meditsinskogo universiteta, 2018, no. 1, 5–15 | DOI

[23] S. Royer, A. P. Morais, D. W. da Fonseca Batistao, “Phage therapy as strategy to face post antibiotic era: a guide to beginners and experts”, Arch. Microbiol., 203:4 (2021), 1271–1279 | DOI

[24] J. Y. Nale, B. Ahmed, R. Haigh, J. Shan, P. Phothaworn, P. Thiennimitr, A. Garcia, M. AbuOun, M. F. Anjum, S. Korbsrisate, E. E. Galyov, D. J. Malik, M. R.J. Clokie, “Activity of a Bacteriophage Cocktail to Control Salmonella Growth Ex Vivo in Avian, Porcine, and Human Epithelial Cell Cultures”, Phage (New Rochelle), 4:1 (2023), 11–25 | DOI | MR

[25] L. A. Miroshnichenko, V. D. Gusev, “Complete spectra of periodicities in the problems of differentiation of closely related bacterial genomes”, J. Phys.: Conf. Ser., 1715 (2021), 012026 | DOI

[26] V. D. Gusev, L. A. Miroshnichenko, T. N. Titkova, Yu. P. Dzhioev, I. V. Kozlova, A. P. Paramonov, “Strukturirovannye RNK-markery dlya genotipirovaniya virusa kleschevogo entsefalita”, Matematicheskaya biologiya i bioinformatika, 13:1 (2018), 13–37 | DOI

[27] K. Dimovski, H. Cao, O. L. Wijburg, R. A. Strugnell, R. K. Mantena, M. Whipp, Hogg G, . Holt K. E., “Analysis of Salmonella enterica serovar Typhimurium variable-number tandem-repeat data for public health investigation based on measured mutation rates and whole-genome sequence comparisons”, J. Bacteriol., 196 (2014), 3036–3044 | DOI

[28] M. K. Kjeldsen, M. Torpdahl, K. Pedersen, E. M. Nielsen, “Development and comparison of a generic multiple-locus variable-number tandem repeat analysis with pulsed-field gel electrophoresis for typing of Salmonella enterica subsp”, enterica. J. Appl. Microbiol, 119 (2015), 1707–1717 | DOI

[29] A. N. Kolmogorov, “Tri podkhoda k opredeleniyu ponyatiya “kolichestvo informatsii””, Problemy peredachi informatsii, 1:1 (1965), 3–11 | MR | Zbl

[30] V. D. Gusev, L. A. Miroshnichenko, “Slozhnost DNK-posledovatelnostei. Razlichnye podkhody i opredeleniya”, Matematicheskaya biologiya i bioinformatika, 15:2 (2020), 313–337 | DOI

[31] V. D. Gusev, L. A. Nemytikova, N. A. Chuzhanova, “On the complexity measures of genetic sequences”, Bioinformatics, 15:12 (1999), 994–999 | DOI | MR

[32] A. Lempel, J. Ziv, “On the complexity of finite sequences”, IEEE Trans. Inform. Theory, IT-22:1 (1976), 75–81 | DOI | MR | Zbl

[33] V. D. Gusev, L. A. Miroshnichenko, N. A. Chuzhanova, “Vyyavlenie fraktalopodobnykh struktur v DNK-posledovatelnostyakh”, Information Science Computing. Classification, Forecasting, Data Mining, 8, 2009, 117–123 (International Book Series)

[34] P. H.A. Sneath, R. R. Sokal, Numerical Taxonomy, Freeman, San Francisco, 1973 | MR | Zbl

[35] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms”, Molecular Biology and Evolution, 35 (2018), 1547–1549 | DOI

[36] N. Saitou, M. Nei, “The neighbour-joining method: A new method for reconstructing phylogenetic trees”, Mol. Biol. Evol, 4 (1987), 406–425

[37] Hauth AM, DA. Joseph, “Beyond tandem repeats: complex pattern structures and distant regions of similarity”, Bioinformatics, 18:1 (2002), S31–S37 | DOI

[38] S. K. Kushwaha, N. L.S. Bhavesh, B. Abdella, C. Lahiri, S. A. Marathe, “The phylogenomics of CRISPR-Cas system and revelation of its features in Salmonella”, Sci. Rep., 10 (2020), 21156 | DOI