Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a5, author = {L. A. Miroshnichenko and N. A. Arefieva and Yu. P. Dzhioev and V. D. Gusev and A. Yu. Borisenko and S. V. Erdyneev and Yu. S. Bukin}, title = {Repeat structure in {\emph{Salmonella}} genomes}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {602--620}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a5/} }
TY - JOUR AU - L. A. Miroshnichenko AU - N. A. Arefieva AU - Yu. P. Dzhioev AU - V. D. Gusev AU - A. Yu. Borisenko AU - S. V. Erdyneev AU - Yu. S. Bukin TI - Repeat structure in \emph{Salmonella} genomes JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 602 EP - 620 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a5/ LA - ru ID - MBB_2023_18_2_a5 ER -
%0 Journal Article %A L. A. Miroshnichenko %A N. A. Arefieva %A Yu. P. Dzhioev %A V. D. Gusev %A A. Yu. Borisenko %A S. V. Erdyneev %A Yu. S. Bukin %T Repeat structure in \emph{Salmonella} genomes %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 602-620 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a5/ %G ru %F MBB_2023_18_2_a5
L. A. Miroshnichenko; N. A. Arefieva; Yu. P. Dzhioev; V. D. Gusev; A. Yu. Borisenko; S. V. Erdyneev; Yu. S. Bukin. Repeat structure in \emph{Salmonella} genomes. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 602-620. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a5/
[1] M. Y. Popoff, J. Bockemuh, F. W. Brenner, “Supplement 1998 (no. 42) to the Kauffmann White scheme”, Res. Microbiol, 151:1 (2000), 63–65 | DOI
[2] F. W. Brenner, R. G. Villar, F. J. Angulo, R. Tauxe, B. Swaminathan, “Salmonella nomenclature”, Clin. Microbiol, 38:7 (2000), 2465–2467 | DOI
[3] L. A. Knodler, J. R. Elfenbein, “Salmonella enterica”, Trends Microbiol, 27:11 (2019), 964–965 | DOI
[4] Ch. R. Braden, “Salmonella enterica serotype Enteritidis and eggs: a national epidemic in the United States”, Clin. Infect. Dis, 43:4 (2006), 512–517 | DOI
[5] W. Q. Alali, S. Thakur, R. D. Berghaus, M. P. Martin, W. A. Gebreyes, “Prevalence and distribution of Salmonella in organic and conventional broiler poultry farms”, Foodborne Pathog. Dis, 7:11 (2010), 1363–1371 | DOI
[6] R. Johnson, E. Mylona, G. Frankel, “Typhoidal Salmonella. Distinctive virulence factors and pathogenesis”, Cell Microbiol., 20:9 (2018), e12939 | DOI
[7] J. A. Crump, S. P. Luby, E. D. Mintz, “The global burden of typhoid fever”, Bull. World Health Organ, 82:5 (2004), 346–353
[8] G. C. Buckle, C. L. Walker, R. E. Black, “Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010”, J. Glob. Health, 2:1 (2012), 010401 | DOI
[9] J. Chen, J. E. Long, K. Vannice, T. Shewchuk, S. Kumar, S. A. Duncan, A. K.M. Zaidi, “Taking on Typhoid: Eliminating Typhoid Fever as a Global Health Problem”, Open Forum Infect Dis., 10:1 (2023), S74–S81 | DOI
[10] M. M. Aljeldah, “Antimicrobial Resistance and Its Spread Is a Global Threat”, Antibiotics, 11:8 (2022), 1082 | DOI
[11] Y. J. Chang, C. L. Chen, H. P. Yang, Chiu C. H. Prevalence, Serotypes, “and Antimicrobial Resistance Patterns of Non-Typhoid Salmonella in Food in Northern Taiwan”, Pathogens, 11:6 (2022), 705 | DOI
[12] M. A. Salam, M. Y. Al-Amin, M. T. Salam, J. S. Pawar, N. Akhter, A. A. Rabaan, M. A.A. Alqumber, “Antimicrobial Resistance: A Growing Serious Threat for Global Public Health”, Healthcare, 11:13 (2023), 1946 | DOI
[13] J. O'Neill, Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations / the Review on Antimicrobial Resistance chaired by Jim O'Neill, 2014 (accessed 21.12.2023) https://wellcomecollection.org/works/rdpck35v
[14] F. M.E. Wagenlehner, F. Dittmar, “Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis”, Eur. Urol., 82:6 (2022), 658 | DOI
[15] Y. A. Adebisi, A. J. Alaran, M. Okereke, G. I. Oke, O. A. Amos, O. C. Olaoye, I. Oladunjoye, A. Y. Olanrewaju, N. A. Ukor, D. E. Lucero-Prisno, “COVID-19 and Antimicrobial Resistance: A Review”, Infect. Dis. (Auckl), 14 (2021) | DOI
[16] K. Lewis, “The science of antibiotic discovery”, Cell, 181:1 (2020), 29–45 | DOI
[17] N. Dheman, N. Mahoney, E. M. Cox, J. J. Farley, T. Amini, M. L. Lanthier, “An Analysis of Antibacterial Drug Development Trends in the United States, 1980–2019”, Clin. Infect. Dis., 73:11 (2021), e4444–e4450 | DOI
[18] T. Luong, A. C. Salabarria, D. R. Roach, Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going?, Clin. Ther., 42:9 (2020), 1659–1680 | DOI
[19] G. F. Hatfull, R. M. Dedrick, R. T. Schooley, “Phage Therapy for Antibiotic-Resistant Bacterial Infections”, Annu. Rev. Med, 73 (2022), 197–211 | DOI
[20] A. Biswas, J. N. Gagnon, S. J.J. Brouns, P. C. Fineran, C. M. Brown, “CRISPRTarget: bioinformatic prediction and analysis of crRNA targets”, RNA Biol, 10:5 (2013), 817–827 | DOI
[21] R. Barrangou, L. A. Marraffini, “CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity”, Mol. Cell, 54:2 (2014), 234–244 | DOI
[22] P. A. Nazarov, “Alternativy antibiotikam: liticheskie fermenty bakteriofagov i fagovaya terapiya”, Vestnik Rossiiskogo gosudarstvennogo meditsinskogo universiteta, 2018, no. 1, 5–15 | DOI
[23] S. Royer, A. P. Morais, D. W. da Fonseca Batistao, “Phage therapy as strategy to face post antibiotic era: a guide to beginners and experts”, Arch. Microbiol., 203:4 (2021), 1271–1279 | DOI
[24] J. Y. Nale, B. Ahmed, R. Haigh, J. Shan, P. Phothaworn, P. Thiennimitr, A. Garcia, M. AbuOun, M. F. Anjum, S. Korbsrisate, E. E. Galyov, D. J. Malik, M. R.J. Clokie, “Activity of a Bacteriophage Cocktail to Control Salmonella Growth Ex Vivo in Avian, Porcine, and Human Epithelial Cell Cultures”, Phage (New Rochelle), 4:1 (2023), 11–25 | DOI | MR
[25] L. A. Miroshnichenko, V. D. Gusev, “Complete spectra of periodicities in the problems of differentiation of closely related bacterial genomes”, J. Phys.: Conf. Ser., 1715 (2021), 012026 | DOI
[26] V. D. Gusev, L. A. Miroshnichenko, T. N. Titkova, Yu. P. Dzhioev, I. V. Kozlova, A. P. Paramonov, “Strukturirovannye RNK-markery dlya genotipirovaniya virusa kleschevogo entsefalita”, Matematicheskaya biologiya i bioinformatika, 13:1 (2018), 13–37 | DOI
[27] K. Dimovski, H. Cao, O. L. Wijburg, R. A. Strugnell, R. K. Mantena, M. Whipp, Hogg G, . Holt K. E., “Analysis of Salmonella enterica serovar Typhimurium variable-number tandem-repeat data for public health investigation based on measured mutation rates and whole-genome sequence comparisons”, J. Bacteriol., 196 (2014), 3036–3044 | DOI
[28] M. K. Kjeldsen, M. Torpdahl, K. Pedersen, E. M. Nielsen, “Development and comparison of a generic multiple-locus variable-number tandem repeat analysis with pulsed-field gel electrophoresis for typing of Salmonella enterica subsp”, enterica. J. Appl. Microbiol, 119 (2015), 1707–1717 | DOI
[29] A. N. Kolmogorov, “Tri podkhoda k opredeleniyu ponyatiya “kolichestvo informatsii””, Problemy peredachi informatsii, 1:1 (1965), 3–11 | MR | Zbl
[30] V. D. Gusev, L. A. Miroshnichenko, “Slozhnost DNK-posledovatelnostei. Razlichnye podkhody i opredeleniya”, Matematicheskaya biologiya i bioinformatika, 15:2 (2020), 313–337 | DOI
[31] V. D. Gusev, L. A. Nemytikova, N. A. Chuzhanova, “On the complexity measures of genetic sequences”, Bioinformatics, 15:12 (1999), 994–999 | DOI | MR
[32] A. Lempel, J. Ziv, “On the complexity of finite sequences”, IEEE Trans. Inform. Theory, IT-22:1 (1976), 75–81 | DOI | MR | Zbl
[33] V. D. Gusev, L. A. Miroshnichenko, N. A. Chuzhanova, “Vyyavlenie fraktalopodobnykh struktur v DNK-posledovatelnostyakh”, Information Science Computing. Classification, Forecasting, Data Mining, 8, 2009, 117–123 (International Book Series)
[34] P. H.A. Sneath, R. R. Sokal, Numerical Taxonomy, Freeman, San Francisco, 1973 | MR | Zbl
[35] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms”, Molecular Biology and Evolution, 35 (2018), 1547–1549 | DOI
[36] N. Saitou, M. Nei, “The neighbour-joining method: A new method for reconstructing phylogenetic trees”, Mol. Biol. Evol, 4 (1987), 406–425
[37] Hauth AM, DA. Joseph, “Beyond tandem repeats: complex pattern structures and distant regions of similarity”, Bioinformatics, 18:1 (2002), S31–S37 | DOI
[38] S. K. Kushwaha, N. L.S. Bhavesh, B. Abdella, C. Lahiri, S. A. Marathe, “The phylogenomics of CRISPR-Cas system and revelation of its features in Salmonella”, Sci. Rep., 10 (2020), 21156 | DOI