Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a4, author = {Yu. S. Bukin and A. N. Bondaryuk and T. V. Butina}, title = {Performance analysis of cross-assembly of metatranscriptomic datasets in viral community studies}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {418--433}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a4/} }
TY - JOUR AU - Yu. S. Bukin AU - A. N. Bondaryuk AU - T. V. Butina TI - Performance analysis of cross-assembly of metatranscriptomic datasets in viral community studies JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 418 EP - 433 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a4/ LA - ru ID - MBB_2023_18_2_a4 ER -
%0 Journal Article %A Yu. S. Bukin %A A. N. Bondaryuk %A T. V. Butina %T Performance analysis of cross-assembly of metatranscriptomic datasets in viral community studies %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 418-433 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a4/ %G ru %F MBB_2023_18_2_a4
Yu. S. Bukin; A. N. Bondaryuk; T. V. Butina. Performance analysis of cross-assembly of metatranscriptomic datasets in viral community studies. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 418-433. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a4/
[1] L. Zhang, F. X. Chen, Z. Zeng, M. Xu, F. Sun, L. Yang, X. Bi, Y. Lin, Y. J. Gao, H. X. Hao et al, “Advances in Metagenomics and Its Application in Environmental Microorganisms”, Front. Microbiol, 12 (2021), 1–15 | DOI | Zbl
[2] S. Roux, J. Matthijnssens, B. E. Dutilh, “Metagenomics in Virology”, Encyclopedia of Virology, eds. Bamford D.H., Zuckerman M., Academic Press, Cambridge, 2020, 133–140 | DOI
[3] P. Sommers, A. Chatterjee, A. Varsani, G. Trubl, “Integrating Viral Metagenomics into an Ecological Framework”, Annu. Rev. Virol, 8 (2021), 133–158 | DOI
[4] T. M. Santiago-Rodriguez, E. B. Hollister, “Potential Applications of Human Viral Metagenomics and Reference Materials: Considerations for Current and Future Viruses”, Appl. Environ. Microbiol, 86:22 (2020), 1–12 | DOI
[5] T. M. Santiago-Rodriguez, E. B. Hollister, “Unraveling the viral dark matter through viral metagenomics”, Front. Immunol, 13 (2022), 1–13 | DOI
[6] R. Leinonen, H. Sugawara, M. Shumway, “The sequence read archive”, Nucleic Acids Res, 39 (2011), 2010–2012 | DOI
[7] M. Shi, X. D. Lin, J. H. Tian, L. J. Chen, X. Chen, C. X. Li, X. C. Qin, J. Li, J. P. Cao, J. S. Eden et al., “Redefining the invertebrate RNA virosphere”, Nature, 540:7634 (2016), 539–543 | DOI
[8] Y. Y. Zhang, Y. Chen, X. Wei, J. Cui, “Viromes in marine ecosystems reveal remarkable invertebrate RNA virus diversity”, Sci. China Life Sci, 65:2 (2022), 426–437 | DOI
[9] T. Thomas, J. Gilbert, F. Meyer, “Metagenomics a guide from sampling to data analysis”, Microb. Inform. Exp., 2:1 (2012), 3 | DOI | MR
[10] S. Nooij, D. Schmitz, H. Vennema, A. Kroneman, M. P.G. Koopmans, “Overview of virus metagenomic classification methods and their biological applications”, Front. Microbiol., 9 (2018), 749 | DOI
[11] T. D.S. Sutton, A. G. Clooney, F. J. Ryan, R. P. Ross, C. Hill, “Choice of assembly software has a critical impact on virome characterisation”, Microbiome, 7:1 (2019), 1–15 | DOI
[12] S. Hiltemann, H. Rasche, S. Gladman, H. R. Hotz, D. Lariviere, D. Blankenberg, P. D. Jagtap, T. Wollmann, A. Bretaudeau, N. Goue et al, Galaxy Training: A powerful framework for teaching!, PLoS Comput. Biol., 19:1 (2023), 1–18 | DOI
[13] P. Skewes-Cox, T. J. Sharpton, K. S. Pollard, J. L. DeRisi, “Profile hidden Markov models for the detection of viruses within metagenomic sequence data”, PLoS One, 9:8 (2014), e105067 | DOI
[14] J. Ren, K. Song, C. Deng, N. A. Ahlgren, J. A. Fuhrman, Y. Li, X. Xie, R. Poplin, F. Sun, “Identifying viruses from metagenomic data using deep learning”, Quant. Biol., 8:1 (2020), 64–77 | DOI
[15] A. P. Reyes, J. M. Alves, A. M. Durham, A. Gruber, “Use of profile hidden Markov models in viral discovery: current insights”, Adv. Genomics Genet., 7 (2017), 29–45 | DOI
[16] T. V. Butina, Y. S. Bukin, I. S. Petrushin, A. E. Tupikin, M. R. Kabilov, S. I. Belikov, “Extended evaluation of viral diversity in Lake Baikal through metagenomics”, Microorganisms, 9:4 (2021), 1–31 | DOI
[17] T. V. Butina, I. S. Petrushin, I. V. Khanaev, Y. S. Bukin, “Metagenomic Assessment of DNA Viral Diversity in Freshwater Sponges”, Baikalospongia bacillifera. Microorganisms, 10:2 (2022), 480 | DOI
[18] T. V. Butina, I. V. Khanaev, I. S. Petrushin, A. N. Bondaryuk, O. O. Maikova, Y. S. Bukin, “The RNA Viruses in Samples of Endemic Lake Baikal Sponges”, Diversity, 15:7 (2023), 1–20 | DOI
[19] A. M. Bolger, M. Lohse, B. Usadel, “Trimmomatic: A flexible trimmer for Illumina sequence data”, Bioinformatics, 30:15 (2014), 2114–2120 | DOI
[20] S. Nurk, D. Meleshko, A. Korobeynikov, P. A. Pevzner, “MetaSPAdes: A new versatile metagenomic assembler”, Genome Res, 27:5 (2017), 824–834 | DOI
[21] J. Guo, B. Bolduc, A. A. Zayed, A. Varsani, G. Dominguez-Huerta, T. O. Delmont, A. A. Pratama, M. C. Gazitua, D. Vik, M. B. Sullivan et al, “VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses”, Microbiome, 9:1 (2021), 1–13 | DOI | MR | Zbl
[22] S. Nayfach, A. P. Camargo, F. Schulz, E. Eloe-Fadrosh, S. Roux, N. C. Kyrpides, “CheckV assesses the quality and completeness of metagenome-assembled viral genomes”, Nat. Biotechnol., 39:5 (2021), 578–585 | DOI
[23] B. Buchfink, C. Xie, D. H. Huson, “Fast and sensitive protein alignment using DIAMOND”, Nat. Methods, 12:1 (2014), 59–60 | DOI
[24] T. J. Wheeler, J. Clements, S. R. Eddy, R. Hubley, T. A. Jones, J. Jurka, A. F.A. Smit, R. D. Finn, “Dfam: A database of repetitive DNA based on profile hidden Markov models”, Nucleic Acids Res, 41 (2013), 70–82 | DOI
[25] Dfam release 3.7, January 2023 (accessed 02.11.2023) https://www.dfam.org/
[26] N. A. O'Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh, B. Rajput, B. Robbertse, B. Smith-White, D. Ako-Adjei et al, “Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation”, Nucleic Acids Res., 44 (2016), D733–D745 | DOI
[27] B. Langmead, S. L. Salzberg, “Fast gapped-read alignment with Bowtie 2”, Nat. Methods, 9:4 (2012), 357–359 | DOI
[28] P. Danecek, J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard, A. Whitwham, T. Keane, S. A. McCarthy, R. M. Davies, “Twelve years of SAMtools and BCFtools”, Gigascience, 10:2 (2021), 1–4 | DOI
[29] Oksanen J., Package 'vegan', (accessed 03.11.2023) https://github.com/vegandevs/vegan
[30] D. Li, C. M. Liu, R. Luo, K. Sadakane, T. W. Lam, “MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph”, Bioinformatics, 31:10 (2015), 1674–1676 | DOI
[31] Y. Peng, H. C.M. Leung, S. M. Yiu, F. Y.L. Chin, “IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth”, Bioinformatics, 28:11 (2012), 1420–1428 | DOI
[32] C. Yang, D. Chowdhury, Z. Zhang, W. K. Cheung, A. Lu, Z. Bian, L. Zhang, “A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data”, Comput. Struct. Biotechnol. J., 19 (2021), 6301–6314 | DOI
[33] S. Petrovskii, N. Petrovskaya, “Computational ecology as an emerging science”, Interface Focus, 2:2 (2012), 241–254 | DOI
[34] K. Kieft, Z. Zhou, K. Anantharaman, “VIBRANT: Automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences”, Microbiome, 8 (2020), 1–23 | DOI
[35] A. Moya, S. F. Elena, A. Bracho, R. Miralles, E. Barrio, “The evolution of RNA viruses: A population genetics view”, Proc. Natl. Acad. Sci. U.S.A., 24:13 (2000), 6967–6973 | DOI
[36] A. N. Bondaryuk, N. V. Kulakova, O. I. Belykh, Y. S. Bukin, “Dates and Rates of Tick Borne Encephalitis Virus-The Slowest Changing Tick-Borne Flavivirus”, Int. J. Mol. Sci., 24:3 (2023), 2921 | DOI
[37] D. D. Kang, J. Froula, R. Egan, Wang Z. MetaBAT, “an efficient tool for accurately reconstructing single genomes from complex microbial communities”, PeerJ., 3 (2015), e1165 | DOI
[38] Y. W. Wu, B. A. Simmons, S. W. Singer, “MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets”, Bioinformatics, 32:4 (2016), 605–607 | DOI
[39] J. Tamames, F. Puente-Sanchez, “SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline”, Front Microbiol., 9 (2019), 3349 | DOI
[40] K. Rosario, M. Breitbart, “Exploring the viral world through metagenomics”, Curr. Opin. Virol., 1:4 (2011), 289–297 | DOI
[41] B. M. Gudenkauf, I. Hewson, “Comparative metagenomics of viral assemblages inhabiting four phyla of marine invertebrates”, Front. Mar. Sci., 3 (2016), 1–12 | DOI
[42] F. M. Waldron, G. N. Stone, D. J. Obbard, “Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes”, PLoS Genet., 14:7 (2018), e1007533 | DOI
[43] G. H. Bai, S. C. Lin, Y. H. Hsu, S. Y. Chen, “The Human Virome: Viral Metagenomics, Relations with Human Diseases, and Therapeutic Applications”, Viruses, 14 (2022), 278 | DOI
[44] J. C. Richard, E. Blevins, C. D. Dunn, E. M. Leis, T. L. Goldberg, “Viruses of Freshwater Mussels during Mass Mortality Events in Oregon and Washington, USA”, Viruses, 15:8 (2023), 1–18 | DOI
[45] W. Li, A. Godzik, “Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences”, Bioinformatics, 22:13 (2006), 1658–1659 | DOI