Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a3, author = {R. Satpathy and S. Acharya}, title = {Exploring the mangrove based phytochemicals as potential viral {RNA} helicase inhibitors by \emph{in silico} docking and molecular dynamics simulation method}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {405--417}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a3/} }
TY - JOUR AU - R. Satpathy AU - S. Acharya TI - Exploring the mangrove based phytochemicals as potential viral RNA helicase inhibitors by \emph{in silico} docking and molecular dynamics simulation method JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 405 EP - 417 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a3/ LA - en ID - MBB_2023_18_2_a3 ER -
%0 Journal Article %A R. Satpathy %A S. Acharya %T Exploring the mangrove based phytochemicals as potential viral RNA helicase inhibitors by \emph{in silico} docking and molecular dynamics simulation method %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 405-417 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a3/ %G en %F MBB_2023_18_2_a3
R. Satpathy; S. Acharya. Exploring the mangrove based phytochemicals as potential viral RNA helicase inhibitors by \emph{in silico} docking and molecular dynamics simulation method. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 405-417. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a3/
[1] Y. Shang, H. Li, R. Zhang, “Effects of pandemic outbreak on economies: evidence from business history context”, Front. Public Health, 9 (2021), 632043 | DOI
[2] W. Qiu, S. Rutherford, A. Mao, C. Chu, “The pandemic and its impacts”, Health. Cult. Soc., 9 (2017), 1–11 | DOI
[3] C. J. Schlicksup, A. Zlotnick, “Viral structural proteins as targets for antivirals”, Curr. Opin. Virol, 45 (2020), 43–50 | DOI
[4] S. T. Shi, M. M.C. Lai, “Viral and cellular proteins involved in coronavirus replication”, Curr. Top. Microbiol. Immunol, 287 (2005), 95–131 | DOI
[5] A. Ranji, K. Boris-Lawrie, “RNA helicases: emerging roles in viral replication and the host innate response”, RNA Biol, 7:6 (2010), 775–787 | DOI
[6] D. Ghosh, A. Basu, “Present perspectives on flaviviral chemotherapy”, Drug Discov. Today, 13:13-14 (2008), 619–624 | DOI
[7] J. Kim, S. J. Park, J. Park, H. Shin, Y. S. Jang, J. S. Woo, D. H. Min, “Identification of a direct-acting antiviral agent targeting RNA helicase via a graphene oxide nanobiosensor”, ACS Appl. Mater. Interfaces, 13:22 (2021), 25715–25726 | DOI
[8] E. De Clercq, “Strategies in the design of antiviral drugs”, Nat. Rev. Drug Discov., 1:1 (2002), 13–25 | DOI
[9] A. N. Spratt, F. Gallazzi, T. P. Quinn, C. L. Lorson, A. Sonnerborg, K. Singh, “Coronavirus helicases: attractive and unique targets of antiviral drug-development and therapeutic patents”, Expert Opin. Ther. Pat., 31:4 (2021), 339–350 | DOI
[10] S. R. Kannan, A. N. Spratt, T. P. Quinn, X. Heng, C. L. Lorson, A. Sonnerborg, S. N. Byrareddy, K. Singh, Infectivity of SARS-CoV-2: there is something more than D614G?, J. Neuroimmune Pharmacol., 15:4 (2020), 574–577 | DOI
[11] W. R. Shadrick, J. Ndjomou, R. Kolli, S. Mukherjee, A. M. Hanson, D. N. Frick, “Discovering new medicines targeting helicases: challenges and recent progress”, J. Biomol. Screen, 18:7 (2013), 761–781 | DOI
[12] S. S. Ortega, L. C. Cara, M. K. Salvador, “In silico pharmacology for a multidisciplinary drug discovery process”, Drug Metab. Drug Interact., 27:4 (2012), 199–207 | DOI
[13] C. M. Song, S. J. Lim, J. C. Tong, “Recent advances in computer-aided drug design”, Brief. Bioinform., 10:5 (2009), 579–591 | DOI
[14] B. Shaker, S. Ahmad, J. Lee, C. Jung, D. Na, “In silico methods and tools for drug discovery”, Comput. Biol. Med., 137 (2021), 104851 | DOI
[15] Y. Kumar, H. Singh, C. N. Patel, “In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug repurposing”, J. Infect. Public Health, 13:9 (2020), 1210–1223 | DOI
[16] M. A. White, W. Lin, X. Cheng, “Discovery of COVID-19 inhibitors targeting the SARS CoV-2 Nsp13 helicase”, J. Phys. Chem. Lett., 11:21 (2020), 9144–9151 | DOI
[17] R. Satpathy, S. Acharya, “Development of a database of RNA helicase inhibitors (VHIMDB) of pathogenic viruses and in silico screening for the potential drug molecules”, Eurobiotech J., 6:3 (2022), 116–125 | DOI
[18] A. K. Ibrahim, A. I. Youssef, A. S. Arafa, S. A. Ahmed, “Anti-H5N1 virus flavonoids from Capparis sinaica Veill”, Nat. Prod. Res., 27:22 (2013), 2149–2153 | DOI
[19] L. Yarmolinsky, M. Huleihel, M. Zaccai, S. Ben-Shabat, “Potent antiviral flavone glycosides from Ficus benjamina leaves”, Fitoterapia, 83:2 (2012), 362–367 | DOI
[20] S. Ben-Shabat, L. Yarmolinsky, D. Porat, A. Dahan, “Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies”, Drug Deliv. Transl. Res., 10:2 (2020), 354–367 | DOI
[21] P. D. Abeysinghe, “Antibacterial activity of some medicinal mangroves against antibiotic resistant pathogenic bacteria”, Indian J. Pharm. Sci., 72:2 (2010), 167–172 | DOI
[22] R. Satpathy, S. Acharya, “Phytochemicals from mangroves and their antiviral applications”, Handbook of Research on advanced phytochemicals and plant-based drug discovery, IGI Global, 2022, 350–365 | DOI
[23] M. O. Aljahdali, M. H.R. Molla, F. Ahammad, “Compounds identified from marine mangrove plant (Avicennia Alba) as potential antiviral drug candidates against WDSV, an in-silico approach”, Mar. Drugs, 19:5 (2021), 253 | DOI
[24] S. Mitra, N. Naskar, P. Chaudhuri, “A review on potential bioactive phytochemicals for novel therapeutic applications with special emphasis on mangrove species”, Phytomed. Plus, 1:4 (2021), 100107 | DOI
[25] P. D. Abeysinghe, R. P. Wanigatunge, R. N. Pathirana, “Evaluation of antibacterial activity of different mangrove plant extracts”, Ruhuna J. Sci., 1 (2006), 104–112 | DOI
[26] C. A. Lipinski, “Lead- and drug-like compounds: the rule-of-five revolution”, Drug Discov. Today Technol, 1:4 (2004), 337–341 | DOI
[27] G. M. Morris, M. Lim-Wilby, “Molecular docking”, Molecular modeling of proteins, Humana Press, 2008, 365–382 | DOI
[28] R. Satpathy, “Application of molecular docking methods on endocrine disrupting chemicals: a review”, J. Appl. Biotechnol. Rep., 7:2 (2020), 74–80 | DOI
[29] R. Huey, G. M. Morris, S. Forli, “Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial, 92037”, Scripps Research Institute Molecular Graphics Laboratory, 1000 (2012), 10550
[30] R. Kumari, R. Kumar, “Open Source Drug Discovery Consortium, Lynn A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations”, J. Chem. Inf. Model., 54:7 (2014), 1951–1962 | DOI
[31] P. P. Kushwaha, A. K. Singh, T. Bansal, A. Yadav, K. S. Prajapati, M. Shuaib, S. Kumar, “Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking, molecular dynamics simulation, and MM-PBSA approach”, Front. Cell. Infect. Microbiol, 11 (2021), 730288 | DOI | MR
[32] S. Gupta, A. K. Singh, P. P. Kushwaha, K. S. Prajapati, M. Shuaib, S. Senapati, S. Kumar, “Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies”, J. Biomol. Struct. Dyn., 39:12 (2021), 4334–4345 | DOI
[33] S. Garg, A. Anand, Y. Lamba, A. Roy, “Molecular docking analysis of selected phytochemicals against SARS-CoV-2 M pro receptor”, Vegetos, 33:4 (2020), 766–781 | DOI
[34] K. Liu, H. Kokubo, “Exploring the stability of ligand binding modes to proteins by Molecular Dynamics simulations: A cross-docking study”, J. Chem. Inf. Model, 57:10 (2017), 2514–2522 | DOI
[35] M. A. Alamri, U. l. Qamar M. Tahir, M. U. Mirza, S. M. Alqahtani, M. Froeyen, L. L. Chen, “Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches”, J. Pharm. Anal., 10:6 (2020), 546–559 | DOI
[36] L. McGillewie, M. E. Soliman, “The binding landscape of plasmepsin V and the implications for flap dynamics”, Mol. Biosyst., 12:5 (2016), 1457–1467 | DOI
[37] Y. S. Keum, Y. J. Jeong, “Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target”, Biochem. Pharmacol., 84:10 (2012), 1351–1358 | DOI
[38] K. G. Byler, I. V. Ogungbe, W. N. Setzer, “In-silico screening for anti-Zika virus phytochemicals”, J. Mol. Graph. Model., 69 (2016), 78–91 | DOI
[39] R. P. Vivek-Ananth, S. Krishnaswamy, A. Samal, “Potential phytochemical inhibitors of SARS-CoV-2 helicase Nsp13: A molecular docking and dynamic simulation study”, Mol. Divers, 26:1 (2022), 429–442 | DOI
[40] D. Bhowmik, Y. J. Chiranjib, K. K. Tripathi, K. S. Kumar, “Herbal remedies of Azadirachta indica and its medicinal application”, J. Chem. Pharm. Res, 2:1 (2010), 62–72 | MR
[41] D. Amraiz, N. S. Zaidi, M. Fatima, “Antiviral evaluation of an Hsp90 inhibitor, gedunin, against dengue virus”, Trop. J. Pharm. Res, 16:5 (2017), 997–1004 | DOI
[42] A. H. Kumar, “Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets”, BEMS Reports, 6:1 (2020), 11–13 | DOI | MR
[43] V. D. Dwivedi, A. Singh, S. A. El-Kafraway, T. A. Alandijany, A. A. Faizo, L. H. Bajrai, M. A. Kamal, E. I. Azhar, “Mechanistic insights into the Japanese encephalitis virus RNA dependent RNA polymerase protein inhibition by bioflavonoids from Azadirachta indica”, Sci. Rep., 11:1 (2021), 18125 | DOI
[44] P. P. Kushwaha, A. K. Singh, K. S. Prajapati, M. Shuaib, S. Gupta, S. Kumar, “Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study”, Microb. Pathog., 157 (2021), 104954 | DOI
[45] B. U. Uma Reddy, N. K. Routhu, A. Kumar, “Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2”, Microb. Pathog., 168 (2022), 105512 | DOI
[46] T. M. Braga, L. Rocha, T. Y. Chung, R. F. Oliveira, C. Pinho, A. I. Oliveira, J. Morgado, A. Cruz, “Biological activities of gedunin-A limonoid from the Meliaceae family”, Molecules, 25:3 (2020), 493 | DOI
[47] D. H. Bray, D. C. Warhurst, J. D. Connolly, M. J. O'Neill, J. D. Phillipson, “Plants as sources of antimalarial drugs. Part 7. Activity of some species of Meliaceae plants and their constituent limonoids”, Phytother Res., 4:1 (1990), 29–35 | DOI
[48] S. Omar, K. Godard, A. Ingham, H. Hussain, V. Wongpanich, J. Pezzuto, T. Durst, C. Eklu, M. Gbeassor, P. Sanchez-Vindas et al, “Antimalarial activities of gedunin and 7-methoxygedunin and synergistic activity with dillapiol”, Ann. Appl. Biol., 143:2 (2003), 135–141 | DOI
[49] L. Tharmarajah, S. R. Samarakoon, M. K. Ediriweera, P. Piyathilaka, K. H. Tennekoon, K. S. Senathilake, U. Rajagopalan, P. B. Galhena, I. Thabrew, “In vitro anticancer effect of gedunin on human teratocarcinomal (NTERA-2) cancer stem-like cells”, BioMed Res. Int., 2017 (2017), 2413197 | DOI
[50] S. A. Khalid, M. Dawood, J. C. Boulos, M. Wasfi, A. Drif, F. Bahramimehr, N. Shahhamzehei, L. Shan, T. Efferth, “Identification of gedunin from a phytochemical depository as a novel multidrug resistance-bypassing tubulin inhibitor of cancer cells”, Molecules, 27:18 (2022), 5858 | DOI