Comparative analysis of \emph{Actinobacteria} phage-plasmids and their transduction potential
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 323-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

The genus Streptomyces is the most extensively studied group within actinobacteria, which are widely used for the production of antibiotics and other metabolites. Streptomyces bacteriophages attract a lot of interest to study phage-host coevolution. One of the probable interactions is a bacteriophage-mediated horizontal transfer of genes encoding bacterial metabolites, which are important for humans. In this study, a search for Streptomyces bacteriophages having capacities necessary for efficient horizontal transfer was performed. Groups of bacteriophages of actinobacteria and their plasmids with relatively long GC-rich sequences containing both genes related to viral morphogenesis and plasmid-associated genes were revealed by comparative genome analysis. In one of these groups, homologs of proteins of DNA packaging into a capsid of Punavirus genus phages, that representatives are capable to perform a horizontal transfer of genes with high frequency were identified. Taking it into account, as well as the peculiarities of their genomic structure, horizontal gene transfer by this group of viruses and plasmids was assumed to occur. Considering the genome length and GC-content, it is thought that these viruses could be useful for producers construction. Moreover, some given examples showing the chimerical origin of phage-plasmids allow suggesting that recombination events between considered phages-plasmids occur at high frequency. New representatives of viruses with low similarity to known phage genomes were also detected among plasmids. A wide diversity of actinobacterial phage-plasmids that is related to their variability and a probable existence of a great number of sequences of this type of viruses in databases were found out.
@article{MBB_2023_18_2_a2,
     author = {N. A. Nikulin and S. S. Kiselev and V. V. Panyukov and Y. Lu and A. A. Zimin},
     title = {Comparative analysis of {\emph{Actinobacteria}} phage-plasmids and their transduction potential},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {323--346},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a2/}
}
TY  - JOUR
AU  - N. A. Nikulin
AU  - S. S. Kiselev
AU  - V. V. Panyukov
AU  - Y. Lu
AU  - A. A. Zimin
TI  - Comparative analysis of \emph{Actinobacteria} phage-plasmids and their transduction potential
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 323
EP  - 346
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a2/
LA  - en
ID  - MBB_2023_18_2_a2
ER  - 
%0 Journal Article
%A N. A. Nikulin
%A S. S. Kiselev
%A V. V. Panyukov
%A Y. Lu
%A A. A. Zimin
%T Comparative analysis of \emph{Actinobacteria} phage-plasmids and their transduction potential
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 323-346
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a2/
%G en
%F MBB_2023_18_2_a2
N. A. Nikulin; S. S. Kiselev; V. V. Panyukov; Y. Lu; A. A. Zimin. Comparative analysis of \emph{Actinobacteria} phage-plasmids and their transduction potential. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 323-346. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a2/

[1] R. Subramani, W. Aalbersberg, “Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery”, Appl. Microbiol. Biotechnol., 97 (2013), 9291–9321 | DOI

[2] F. Mohammadipanah, J. Wink, “Actinobacteria from arid and desert habitats: diversity and biological activity”, Front. Microbiol., 6 (2016), 1541 | DOI

[3] A. S. Azman, I. Othman, S. S. Velu, K. G. Chan, L. H. Lee, “Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity”, Front. Microbiol., 6 (2015), 856 | DOI

[4] I. Nouioui, L. Carro, M. Garcia-Lopez, J. P. Meier-Kolthoff, T. Woyke, N. C. Kyrpides, R. Pukall, H. P. Klenk, M. Goodfellow, M. Goker, “Genome-based taxonomic classification of the phylum Actinobacteria”, Front. Microbiol., 9 (2018), 2007 | DOI

[5] D. H. Amin, N. A. Abdallah, A. Abolmaaty, S. Tolba, E. M.H. Wellington, “Microbiological and molecular insights on rare actinobacteria harboring bioactive prospective”, Bull. Natl. Res. Cent., 44 (2020), 5 | DOI

[6] R. Subramani, D. Sipkema, “Marine rare actinomycetes: a promising source of structurally diverse and unique novel natural products”, Mar. Drugs, 17 (2019), 249 | DOI

[7] S. Chaturvedi, S. M.P. Khurana, Plant Biotechnology: Progress in Genomic Era, eds. Khurana S., Gaur R., Springer, Singapore, 2019, 277–307 | DOI

[8] N. D. Zinder, J. Lederberg, “Genetic exchange in Salmonella”, J. Bacteriol., 64 (1952), 679–699 | DOI

[9] A. Thierauf, G. Perez, A. S. Maloy, “Generalized transduction”, Methods Mol. Biol., 501 (2009), 267–286 | DOI

[10] J. Chen, N. Quiles-Puchalt, Y. N. Chiang, R. Bacigalupe, A. Fillol-Salom, M. Chee, J. R. Fitzgerald, J. R. Penades, “Genome hypermobility by lateral transduction”, Science, 362 (2018), 207–212 | DOI

[11] S. D. Moore, “Assembling new Escherichia coli strains by transduction using phage P1”, Methods Mol. Biol., 765 (2011), 155–169 | DOI

[12] L. C. Thomason, N. Costantino, D. L. Court, “E. coli genome manipulation by P1 transduction”, Chapter 1, Curr. Protoc. Mol. Biol., 2007, 1.17.1–1.17.8 | DOI

[13] D. A. Russell, G. F. Hatfull, “PhagesDB: the actinobacteriophage database”, Bioinformatics, 33 (2017), 784–786 | DOI

[14] T. Brettin, J. J. Davis, T. Disz, R. A. Edwards, S. Gerdes, G. J. Olsen, R. Olson, R. Overbeek, B. Parrello, G. D. Pusch et al, “RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes”, Sci. Rep., 5 (2015), 8365 | DOI

[15] J. J. Davis, A. R. Wattam, R. K. Aziz, T. Brettin, R. Butler, R. M. Butler, P. Chlenski, N. Conrad, A. Dickerman, E. M. Dietrich et al, “The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities”, Nucleic Acids Res., 48 (2020), D606-D612 | DOI

[16] Y. Tanizawa, T. Fujisawa, Y. Nakamura, “DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication”, Bioinformatics, 34 (2018), 1037–1039 | DOI

[17] B. Contreras-Moreira, P. Vinuesa, “GET_HOMOLOGUES a versatile software package for scalable and robust microbial pangenome analysis”, Appl. Environ. Microbiol., 79 (2013), 7696–7701 | DOI

[18] D. M. Kristensen, L. Kannan, M. K. Coleman, Y. I. Wolf, A. Sorokin, E. V. Koonin, A. Mushegian, “A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches”, Bioinformatics, 26 (2010), 1481–1487 | DOI

[19] P. Vinuesa, L. E. Ochoa-Sanchez, B. Contreras-Moreira, “GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus”, Stenotrophomonas. Front. Microbiol., 9 (2018), 771 | DOI

[20] J. P. Meier-Kolthoff, M. Goker, “VICTOR: genome-based phylogeny and classification of prokaryotic viruses”, Bioinformatics, 33 (2017), 3396–3404 | DOI

[21] T. Sorensen, “A method of establishing groups of equal amplitudes in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons”, Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter, v. 5, 1948, 1–34

[22] J. R. Bray, J. T. Curtis, “An ordination of the upland forest communities of Southern Wisconsin”, Ecological Monographs, 27 (1957), 325–349 | DOI

[23] V. V. Panyukov, S. S. Kiselev, O. N. Ozoline, “Unique k-mers as strain-specific barcodes for phylogenetic analysis and natural microbiome profiling”, Int. J. Mol. Sci., 21 (2020), 944 | DOI

[24] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms”, Mol. Biol. Evol., 35 (2018), 1547–1549 | DOI

[25] N. Saitou, M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees”, Mol. Biol. Evol., 4 (1987), 406–425 | DOI

[26] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, “Basic local alignment search tool”, J. Mol. Biol., 215 (1990), 403–410 | DOI

[27] S. Henikoff, J. G. Henikoff, “Amino acid substitution matrices from protein blocks”, Proc. Natl. Acad. Sci. USA, 89 (1992), 10915–10919 | DOI

[28] M. J. Sullivan, N. K. Petty, S. A. Beatson, “Easyfig: a genome comparison visualizer”, Bioinformatics, 27 (2011), 1009–1010 | DOI

[29] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, “Cytoscape: a software environment for integrated models of biomolecular interaction networks”, Genome Res., 13 (2003), 2498–2504 | DOI

[30] A. A. Hagberg, D. A. Schult, P. J. Swart, Proceedings of the 7th Python in Science Conference, eds. Varoquaux G., Vaught T., Millman J., Pasadena, 2008, 11–15

[31] M. Latapy, C. Magnien, N. Del Vecchio, “Basic notions for the analysis of large two mode networks”, Social Netw., 30 (2008), 31–48 | DOI

[32] S. Holm, “A simple sequentially rejective multiple test procedure”, Scand. J. Statist., 6 (1979), 65–70 | MR | Zbl

[33] J. Felsenstein, “Evolutionary trees from DNA sequences: A maximum likelihood approach”, J. Mol. Evol., 17 (1981), 368–376 | DOI

[34] L. T. Nguyen, H. A. Schmidt, A. von Haeseler, B. Q. Minh, “IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies”, Mol. Biol. Evol., 32 (2015), 268–274 | DOI

[35] R. C. Edgar, “MUSCLE: Multiple sequence alignment with high accuracy and high throughput”, Nucleic Acids Res, 32 (2004), 1792–1797 | DOI

[36] S. Kalyaanamoorthy, B. Q. Minh, T. K.F. Wong, von Haeseler A, L. S. Jermiin, “ModelFinder: Fast model selection for accurate phylogenetic estimates”, Nat. Methods, 14 (2017), 587–589 | DOI

[37] G. Schwarz, “Estimating the dimension of a model”, Ann. Stat., 6 (1978), 461–464 | DOI | MR | Zbl

[38] D. T. Hoang, O. Chernomor, A. von Haeseler, B. Q. Minh, L. S. Vinh, “UFBoot2: improving the ultrafast bootstrap approximation”, Mol. Biol. Evol., 35 (2018), 518–522 | DOI

[39] M. Ventura, C. Canchaya, A. Tauch, G. Chandra, G. F. Fitzgerald, K. F. Chater, D. van Sinderen, “Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum”, Microbiol. Mol. Biol. Rev., 71 (2007), 495–548 | DOI

[40] S. C. Heinsch, S. Y. Hsu, L. Otto-Hanson, L. Kinkel, M. J. Smanski, “Complete genome sequences of Streptomyces spp. isolated from disease-suppressive soils”, BMC Genomics, 20 (2019), 994 | DOI

[41] G. Subramaniam, V. Thakur, R. K. Saxena, S. Vadlamudi, S. Purohit, V. Kumar, A. Rathore, A. Chitikineni, R. K. Varshney, “Complete genome sequence of sixteen plant growth promoting Streptomyces strains”, Sci. Rep., 10 (2020), 10294 | DOI

[42] L. Zhong, Q. Cheng, X. Tian, L. Zhao, Z. Qin, “Characterization of the replication, transfer, and plasmid/lytic phage cycle of the Streptomyces plasmid-phage pZL12”, J. Bacteriol., 192 (2010), 3747–3754 | DOI

[43] E. Pfeifer, J. A. Moura de Sousa, M. Touchon, E. P.C. Rocha, “Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires”, Nucleic Acids Res., 49 (2021), 2655–2673 | DOI

[44] N. A. Nikulin, A. A. Zimin, “Influence of non-canonical DNA bases on the genomic diversity of Tevenvirinae”, Front. Microbiol., 12 (2021), 632686 | DOI

[45] S. Falkow, L. S. Baron, “Plasmid formation after lambda bacteriophage infection of Escherichia coli-Salmonella typhosa hybrids”, J. Bacteriol., 102 (1970), 288–290 | DOI

[46] M. Lieb, “? mutants which persist as plasmids”, J. Virol., 6 (1970), 218–225 | DOI

[47] A. Jaffe-Brachet, R. D'Ari, “Maintenance of bacteriophage P1 plasmid”, J. Virol., 23 (1977), 476–482 | DOI

[48] N. Sternberg, R. Hoess, “The molecular genetics of bacteriophage P1”, Annu. Rev. Genet., 17 (1983), 123–154 | DOI

[49] A. E. Jacob, P. T. Barth, N. J. Grinter, “Compatibility properties of P1 and $\varphi$AMP prophages”, Mol. Gen. Genet., 141 (1975), 263–267 | DOI

[50] R. Goldstein, J. Sedivy, E. Ljungquist, “Propagation of satellite phage P4 as a plasmid”, Proc. Natl. Acad. Sci. USA, 75 (1982), 515–519 | DOI

[51] D. Ghisotti, F. Briani, F. Forti, F. Piazza, S. Polo, P. Sabbattini, T. Sturniolo, S. Terzano, S. Zangrossi, M. Zappone, G. Sironi, G. Deho, “Multiple regulatory mechanisms controlling phage-plasmid P4 propagation”, FEMS Microbiol. Rev., 17 (1995), 127–134 | DOI

[52] V. K. Ravin, M. G. Shulga, “Evidence for extrachromosomal location of prophage N15”, Virology, 40 (1970), 800–807 | DOI

[53] V. N. Rybchin, A. N. Svarchevsky, “The plasmid prophage N15: a linear DNA with covalently closed ends”, Mol. Microbiol., 33 (1999), 895–903 | DOI

[54] N. V. Ravin, “N15: the linear phage-plasmid”, Plasmid, 65 (2011), 102–109 | DOI

[55] N. Strizhov, L. Tikhomirova, “Construction of recombinant plasmid carrying the DNA fragment responsible for prophage integration”, Nucleic Acids Res., 5 (1978), 1767–1777 | DOI

[56] D. J. Donoghue, P. A. Sharp, “Construction of a hybrid bacteriophage-plasmid recombinant DNA vector”, J. Bacteriol., 136 (1978), 1192–1196 | DOI

[57] A. A. Mel'nikov, A. P. Chernov, I. I. Fodor, “Lambda plasmidophages and their properties”, Mol. Biol. (Moscow), 19 (1985), 610–616 (in Russian)

[58] Q. Cheng, L. Zhong, Z. Qin, “Plasmid pCQ4 and its phage $\Phi$CQ4 of endophytic Streptomyces sp. from Artemisia annua L. Acta Microbiologica Sinica”, Wei Sheng Wu Xue Bao, 52 (2012), 825–831

[59] R. M. Dedrick, T. N. Mavrich, W. L. Ng, J. C. Cervantes Reyes, M. R. Olm, R. E. Rush, D. Jacobs-Sera, D. A. Russell, G. F. Hatfull, “Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems”, Mol. Microbiol., 101 (2016), 625–644 | DOI

[60] K. K. Klyczek, J. A. Bonilla, D. Jacobs-Sera, T. L. Adair, P. Afram, K. G. Allen, M. L. Archambault, R. M. Aziz, F. G. Bagnasco, S. L. Ball et al., “Tales of diversity: genomic and morphological characteristics of forty-six Arthrobacter phages”, PLoS ONE, 12 (2017), e0180517 | DOI

[61] M. C. Smith, R. W. Hendrix, R. Dedrick, K. Mitchell, C. C. Ko, D. Russell, E. Bell, M. Gregory, M. J. Bibb, F. Pethick et al, “Evolutionary relationships among actinophages and a putative adaptation for growth in Streptomyces spp”, J. Bacteriol., 195 (2013), 4924–4935 | DOI

[62] R. Bajpai, V. Soni, L. Khandrika, P. K. Jangir, R. Sharma, P. Agrawal, “Genome sequence of a novel actinophage PIS136 isolated from a strain of Saccharomonospora sp”, J. Virol., 86 (2012), 9552 | DOI

[63] J. Cheepudom, C. C. Lee, B. Cai, M. Meng, “Isolation, characterization, and complete genome analysis of a thermostable bacteriophage that infects Thermobifida fusca”, Front. Microbiol., 6 (2015), 1312 | DOI

[64] G. G. Wilson, K. Y. Young, G. J. Edlin, W. Konigsberg, “High-frequency generalized transduction by bacteriophage T4”, Nature, 280 (1979), 80–82 | DOI

[65] S. R. Casjens, E. B. Gilcrease, D. A. Winn-Stapley, P. Schicklmaier, H. Schmieger, M. L. Pedulla, M. E. Ford, J. M. Houtz, G. F. Hatfull, R. W. Hendrix, “The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy”, J. Bacteriol., 187 (2005), 1091–1104 | DOI