An investigational modeling approach for improving gene selection using regularized Cox regression model
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 282-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

By producing the required proteins, the process of gene expression establishes the physical properties of living things. Gene expression from DNA or RNA may be recorded using a variety of approaches. Regression analysis has evolved in prominence in the area of genetic research recently. Several of the genes in high dimensional gene expression information for statistical inference may not be related to their illnesses, which is one of the major problems. The ability of gene selection to enhance the outcomes of several techniques has been demonstrated. For censored survival data, the Cox proportional hazards regression model is the most widely used model. In order to identify important genes and achieve high classification accuracy, a new technique for selecting the tuning parameter is suggested in this study using an optimization algorithm. According to experimental findings, the suggested strategy performs much better than the two rival methods in terms of the area under the curve and the number of chosen genes. This study provides a comprehensive assessment of the latest work on performance evaluation of regression analysis in gene selection. In addition to its performance analysis, this research conducts a thorough assessment of the numerous efforts done on various extended models based on gene selection in recent years.
@article{MBB_2023_18_2_a18,
     author = {Ghada Yousif Ismail Abdallh and Zakariya Yahya Algamal},
     title = {An investigational modeling approach for improving gene selection using regularized {Cox} regression model},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {282--293},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a18/}
}
TY  - JOUR
AU  - Ghada Yousif Ismail Abdallh
AU  - Zakariya Yahya Algamal
TI  - An investigational modeling approach for improving gene selection using regularized Cox regression model
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 282
EP  - 293
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a18/
LA  - en
ID  - MBB_2023_18_2_a18
ER  - 
%0 Journal Article
%A Ghada Yousif Ismail Abdallh
%A Zakariya Yahya Algamal
%T An investigational modeling approach for improving gene selection using regularized Cox regression model
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 282-293
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a18/
%G en
%F MBB_2023_18_2_a18
Ghada Yousif Ismail Abdallh; Zakariya Yahya Algamal. An investigational modeling approach for improving gene selection using regularized Cox regression model. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 282-293. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a18/

[1] M. Cockeran, S. G. Meintanis, J. S. Allison, “Goodness-of-fit tests in the Cox proportional hazards model”, Communications in Statistics Simulation and Computation, 50:12 (2019), 4132–4143 | DOI | MR

[2] T. Emura, Y. H. Chen, H. Y. Chen, “Survival prediction based on compound covariate under Cox proportional hazard models”, PLoS One, 7:10 (2012), e47627 | DOI

[3] J. Huang, L. Liu, Y. Liu, X. Zhao, “Group selection in the Cox model with a diverging number of covariates”, Statistica Sinica, 2014, 1787–1810 | DOI | MR | Zbl

[4] U. Karabey, N. A. Tutkun, “Model selection criterion in survival analysis”, AIP Conference Proceedings, 1863:1 (2017), 120003 | DOI

[5] C. Leng, H. H. Zhang, “Model selection in nonparametric hazard regression”, Journal of Nonparametric Statistics, 18:7-8 (2006), 417–429 | DOI | MR | Zbl

[6] R. Tibshirani, “Regression shrinkage and selection via the lasso”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 58:1 (1996), 267–288 | DOI | MR | Zbl

[7] J. Fan, R. Li, “Variable selection via nonconcave penalized likelihood and its oracle properties”, Journal of the American Statistical Association, 96:456 (2001), 1348–1360 | DOI | MR | Zbl

[8] H. Zou, T. Hastie, “Regularization and variable selection via the elastic net”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67:2 (2005), 301–320 | DOI | MR | Zbl

[9] H. Zou, “The adaptive lasso and its oracle properties”, Journal of the American Statistical Association, 101:476 (2006), 1418–1429 | DOI | MR | Zbl

[10] Z. Y. Algamal, M. H. Lee, “Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification”, Expert Systems with Applications, 42:23 (2015), 9326–9332 | DOI

[11] Z. Y. Algamal, M. H. Lee, “Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification”, Computers in Biology and Medicine, 67 (2015), 136–145 | DOI

[12] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri et al, “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring”, Science, 286:5439 (1999), 531–537 | DOI

[13] D. V. Nguyen, D. M. Rocke, “Tumor classification by partial least squares using microarray gene expression data”, Bioinformatics, 18:1 (2002), 39–50 | DOI

[14] M. Xiong, L. Jin, W. Li, E. Boerwinkle, “Computational methods for gene expression-based tumor classification”, Biotechniques, 29:6 (2000), 1264–1270 | DOI

[15] P. Baldi, A. D. Long, “A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes”, Bioinformatics, 17:6 (2001), 509–519 | DOI

[16] F. H.A. Shibly, R. L. Kumar, “Image Processing for Automatic Cell Nucleus Segmentation Using Super pixel and Clustering Methods on Histopathological Images”, Tamjeed Journal of Healthcare Engineering and Science Technology, 1:1 (2023), 54–63 | DOI

[17] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, S. Levy, “A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis”, Bioinformatics, 21:5 (2005), 631–643 | DOI

[18] Y. Liu, “Detect key gene information in classification of microarray data”, EURASIP Journal on Advances in Signal Processing, 2008, 612397 | DOI | MR

[19] D. R. Cox, “Regression models and life-tables”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 34:2 (1972), 187–202 | DOI | MR

[20] P. Du, S. Ma, H. Liang, “Penalized Variable Selection Procedure for Cox Models with Semiparametric Relative Risk”, Ann. Stat., 38:4 (2010), 2092–2117 | DOI | MR | Zbl

[21] Z. Fu, C. R. Parikh, B. Zhou, “Penalized variable selection in competing risks regression”, Lifetime Data Anal., 23:3 (2017), 353–376 | DOI | MR | Zbl

[22] J. Gui, H. Li, “Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data”, Bioinformatics, 21:13 (2005), 3001–3008 | DOI | MR

[23] S. Hossain, S. E. Ahmed, “Penalized and Shrinkage Estimation in the Cox Proportional Hazards Model”, Communications in Statistics Theory and Methods, 43:5 (2014), 1026–1040 | DOI | MR | Zbl

[24] W. Hou, L. Song, X. Wang, “Penalized Empirical Likelihood via Bridge Estimator in Cox's Proportional Hazard Model”, Communications in Statistics Theory and Methods, 43:2 (2013), 426–440 | DOI | MR

[25] G. Kauermann, “Penalized spline smoothing in multivariable survival models with varying coefficients”, Computational Statistics Data Analysis, 49:1 (2005), 169–186 | DOI | MR | Zbl

[26] C. Y. Lin, S. Halabi, “A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation”, Commun. Stat. Theory Methods, 46:10 (2017), 4791–4808 | DOI | MR | Zbl

[27] E. Park, I. D. Ha, “Penalized variable selection for accelerated failure time models”, Communications for Statistical Applications and Methods, 25:6 (2018), 591–604 | DOI | MR

[28] Y. Shi, D. Xu, Y. Cao, Y. Jiao, “Variable Selection via Generalized SELO-Penalized Cox Regression Models”, Journal of Systems Science and Complexity, 32:2 (2019), 709–736 | DOI | MR | Zbl

[29] R. Suchting, E. T. Hebert, P. Ma, D. E. Kendzor, M. S. Businelle, “Using Elastic Net Penalized Cox Proportional Hazards Regression to Identify Predictors of Imminent Smoking Lapse”, Nicotine and Tobacco Research, 21:2 (2019), 173–179 | DOI

[30] D. Wang, T. T. Wu, Y. Zhao, “Penalized empirical likelihood for the sparse Cox regression model”, Journal of Statistical Planning and Inference, 201 (2019), 71–85 | DOI | MR | Zbl

[31] T. T. Wu, H. Gong, E. M. Clarke, “A Transcriptome Analysis by Lasso Penalized Cox Regression for Pancreatic Cancer Survival”, Journal of Bioinformatics and Computational Biology, 09, Supp. 01 (2012), 63–73 | DOI

[32] H. H. Huang, Y. Liang, “Hybrid L1/2+2 method for gene selection in the Cox proportional hazards model”, Comput. Methods Programs Biomed., 164 (2018), 65–73 | DOI

[33] J. Huang, T. Sun, Z. Ying, Y. Yu, C. H. Zhang, “Oracle Inequalities for the Lasso in the Cox Model”, Ann. Stat., 41:3 (2013), 1142–1165 | DOI | MR | Zbl

[34] H. K. Jiang, Y. Liang, “The L1/2 regularization network Cox model for analysis of genomic data”, Comput. Biol. Med., 100 (2018), 203–208 | DOI

[35] Y. Li, L. Dicker, S. D. Zhao, “The Dantzig Selector for Censored Linear Regression Models”, Stat. Sin., 24:1 (2014), 251–2568 | DOI | MR

[36] C. Liu, Y. Liang, X. Z. Luan, K. S. Leung, T. M. Chan, Z. B. Xu, H. Zhang, “The L1/2 regularization method for variable selection in the Cox model”, Applied Soft. Computing, 14 (2014), 498–503 | DOI

[37] H. H. Zhang, W. Lu, “Adaptive Lasso for Cox's Proportional Hazards Model”, Biometrika, 94:3 (2007), 691–703 | DOI | MR | Zbl

[38] J. Bradic, J. Fan, J. Jiang, “Regularization for Cox's proportional hazards model with NP dimensionality”, Annals of Statistics, 39:6 (2011), 3092–3120 | DOI | MR | Zbl

[39] J. J. Goeman, “L1 penalized estimation in the Cox proportional hazards model”, Biom. J., 52:1 (2010), 70–84 | DOI | MR | Zbl

[40] R. Tibshirani, “The lasso method for variable selection in the Cox model”, Statistics in Medicine, 16:4 (1997), 385–395 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[41] N. Simon, J. Friedman, T. Hastie, R. Tibshirani, “Regularization paths for Cox's proportional hazards model via coordinate descent”, Journal of Statistical Software, 39:5 (2011), 1–13 | DOI

[42] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm”, Computers Structures, 169 (2016), 1–12 | DOI

[43] S. Kawano, “Selection of tuning parameters in bridge regression models via Bayesian information criterion”, Statistical Papers, 55:4 (2014), 1207–1223 | DOI | MR | Zbl

[44] Z. Y. Algamal, M. H. Lee, “Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification”, Expert Systems with Applications, 42:23 (2015), 9326–9332 | DOI

[45] Z. Y. Algamal, “Shrinkage parameter selection via modified cross-validation approach for ridge regression model”, Communications in Statistics-Simulation and Computation, 49:7 (2020), 1922–1930 | DOI | MR

[46] Z. Y. Algamal, “A new method for choosing the biasing parameter in ridge estimator for generalized linear model”, Chemometrics and Intelligent Laboratory Systems, 183 (2018), 96–101 | DOI

[47] A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo, R. I. Fisher, R. D. Gascoyne, H. K. Muller-Hermelink, Smeland, E. B., Giltnane, J. M. et al, “The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma”, New England Journal of Medicine, 346:25 (2002), 1937–1947 | DOI

[48] H. C. Van Houwelingen, T. Bruinsma, A. A. Hart, L. J. Van't Veer, L. F. Wessels, “Cross-validated Cox regression on microarray gene expression data”, Statistics in Medicine, 25:18 (2006), 3201–3216 | DOI | MR

[49] D. G. Beer, S. L. Kardia, C. C. Huang, T. J. Giordano, A. M. Levin, D. E. Misek, L. Lin, G. Chen, T. G. Gharib, D. G. Thomas et al, “Gene-expression profiles predict survival of patients with lung adenocarcinoma”, Nature Medicine, 8:8 (2002), 816–824 | DOI