Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a18, author = {Ghada Yousif Ismail Abdallh and Zakariya Yahya Algamal}, title = {An investigational modeling approach for improving gene selection using regularized {Cox} regression model}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {282--293}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a18/} }
TY - JOUR AU - Ghada Yousif Ismail Abdallh AU - Zakariya Yahya Algamal TI - An investigational modeling approach for improving gene selection using regularized Cox regression model JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 282 EP - 293 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a18/ LA - en ID - MBB_2023_18_2_a18 ER -
%0 Journal Article %A Ghada Yousif Ismail Abdallh %A Zakariya Yahya Algamal %T An investigational modeling approach for improving gene selection using regularized Cox regression model %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 282-293 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a18/ %G en %F MBB_2023_18_2_a18
Ghada Yousif Ismail Abdallh; Zakariya Yahya Algamal. An investigational modeling approach for improving gene selection using regularized Cox regression model. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 282-293. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a18/
[1] M. Cockeran, S. G. Meintanis, J. S. Allison, “Goodness-of-fit tests in the Cox proportional hazards model”, Communications in Statistics Simulation and Computation, 50:12 (2019), 4132–4143 | DOI | MR
[2] T. Emura, Y. H. Chen, H. Y. Chen, “Survival prediction based on compound covariate under Cox proportional hazard models”, PLoS One, 7:10 (2012), e47627 | DOI
[3] J. Huang, L. Liu, Y. Liu, X. Zhao, “Group selection in the Cox model with a diverging number of covariates”, Statistica Sinica, 2014, 1787–1810 | DOI | MR | Zbl
[4] U. Karabey, N. A. Tutkun, “Model selection criterion in survival analysis”, AIP Conference Proceedings, 1863:1 (2017), 120003 | DOI
[5] C. Leng, H. H. Zhang, “Model selection in nonparametric hazard regression”, Journal of Nonparametric Statistics, 18:7-8 (2006), 417–429 | DOI | MR | Zbl
[6] R. Tibshirani, “Regression shrinkage and selection via the lasso”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 58:1 (1996), 267–288 | DOI | MR | Zbl
[7] J. Fan, R. Li, “Variable selection via nonconcave penalized likelihood and its oracle properties”, Journal of the American Statistical Association, 96:456 (2001), 1348–1360 | DOI | MR | Zbl
[8] H. Zou, T. Hastie, “Regularization and variable selection via the elastic net”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67:2 (2005), 301–320 | DOI | MR | Zbl
[9] H. Zou, “The adaptive lasso and its oracle properties”, Journal of the American Statistical Association, 101:476 (2006), 1418–1429 | DOI | MR | Zbl
[10] Z. Y. Algamal, M. H. Lee, “Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification”, Expert Systems with Applications, 42:23 (2015), 9326–9332 | DOI
[11] Z. Y. Algamal, M. H. Lee, “Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification”, Computers in Biology and Medicine, 67 (2015), 136–145 | DOI
[12] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri et al, “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring”, Science, 286:5439 (1999), 531–537 | DOI
[13] D. V. Nguyen, D. M. Rocke, “Tumor classification by partial least squares using microarray gene expression data”, Bioinformatics, 18:1 (2002), 39–50 | DOI
[14] M. Xiong, L. Jin, W. Li, E. Boerwinkle, “Computational methods for gene expression-based tumor classification”, Biotechniques, 29:6 (2000), 1264–1270 | DOI
[15] P. Baldi, A. D. Long, “A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes”, Bioinformatics, 17:6 (2001), 509–519 | DOI
[16] F. H.A. Shibly, R. L. Kumar, “Image Processing for Automatic Cell Nucleus Segmentation Using Super pixel and Clustering Methods on Histopathological Images”, Tamjeed Journal of Healthcare Engineering and Science Technology, 1:1 (2023), 54–63 | DOI
[17] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, S. Levy, “A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis”, Bioinformatics, 21:5 (2005), 631–643 | DOI
[18] Y. Liu, “Detect key gene information in classification of microarray data”, EURASIP Journal on Advances in Signal Processing, 2008, 612397 | DOI | MR
[19] D. R. Cox, “Regression models and life-tables”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 34:2 (1972), 187–202 | DOI | MR
[20] P. Du, S. Ma, H. Liang, “Penalized Variable Selection Procedure for Cox Models with Semiparametric Relative Risk”, Ann. Stat., 38:4 (2010), 2092–2117 | DOI | MR | Zbl
[21] Z. Fu, C. R. Parikh, B. Zhou, “Penalized variable selection in competing risks regression”, Lifetime Data Anal., 23:3 (2017), 353–376 | DOI | MR | Zbl
[22] J. Gui, H. Li, “Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data”, Bioinformatics, 21:13 (2005), 3001–3008 | DOI | MR
[23] S. Hossain, S. E. Ahmed, “Penalized and Shrinkage Estimation in the Cox Proportional Hazards Model”, Communications in Statistics Theory and Methods, 43:5 (2014), 1026–1040 | DOI | MR | Zbl
[24] W. Hou, L. Song, X. Wang, “Penalized Empirical Likelihood via Bridge Estimator in Cox's Proportional Hazard Model”, Communications in Statistics Theory and Methods, 43:2 (2013), 426–440 | DOI | MR
[25] G. Kauermann, “Penalized spline smoothing in multivariable survival models with varying coefficients”, Computational Statistics Data Analysis, 49:1 (2005), 169–186 | DOI | MR | Zbl
[26] C. Y. Lin, S. Halabi, “A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation”, Commun. Stat. Theory Methods, 46:10 (2017), 4791–4808 | DOI | MR | Zbl
[27] E. Park, I. D. Ha, “Penalized variable selection for accelerated failure time models”, Communications for Statistical Applications and Methods, 25:6 (2018), 591–604 | DOI | MR
[28] Y. Shi, D. Xu, Y. Cao, Y. Jiao, “Variable Selection via Generalized SELO-Penalized Cox Regression Models”, Journal of Systems Science and Complexity, 32:2 (2019), 709–736 | DOI | MR | Zbl
[29] R. Suchting, E. T. Hebert, P. Ma, D. E. Kendzor, M. S. Businelle, “Using Elastic Net Penalized Cox Proportional Hazards Regression to Identify Predictors of Imminent Smoking Lapse”, Nicotine and Tobacco Research, 21:2 (2019), 173–179 | DOI
[30] D. Wang, T. T. Wu, Y. Zhao, “Penalized empirical likelihood for the sparse Cox regression model”, Journal of Statistical Planning and Inference, 201 (2019), 71–85 | DOI | MR | Zbl
[31] T. T. Wu, H. Gong, E. M. Clarke, “A Transcriptome Analysis by Lasso Penalized Cox Regression for Pancreatic Cancer Survival”, Journal of Bioinformatics and Computational Biology, 09, Supp. 01 (2012), 63–73 | DOI
[32] H. H. Huang, Y. Liang, “Hybrid L1/2+2 method for gene selection in the Cox proportional hazards model”, Comput. Methods Programs Biomed., 164 (2018), 65–73 | DOI
[33] J. Huang, T. Sun, Z. Ying, Y. Yu, C. H. Zhang, “Oracle Inequalities for the Lasso in the Cox Model”, Ann. Stat., 41:3 (2013), 1142–1165 | DOI | MR | Zbl
[34] H. K. Jiang, Y. Liang, “The L1/2 regularization network Cox model for analysis of genomic data”, Comput. Biol. Med., 100 (2018), 203–208 | DOI
[35] Y. Li, L. Dicker, S. D. Zhao, “The Dantzig Selector for Censored Linear Regression Models”, Stat. Sin., 24:1 (2014), 251–2568 | DOI | MR
[36] C. Liu, Y. Liang, X. Z. Luan, K. S. Leung, T. M. Chan, Z. B. Xu, H. Zhang, “The L1/2 regularization method for variable selection in the Cox model”, Applied Soft. Computing, 14 (2014), 498–503 | DOI
[37] H. H. Zhang, W. Lu, “Adaptive Lasso for Cox's Proportional Hazards Model”, Biometrika, 94:3 (2007), 691–703 | DOI | MR | Zbl
[38] J. Bradic, J. Fan, J. Jiang, “Regularization for Cox's proportional hazards model with NP dimensionality”, Annals of Statistics, 39:6 (2011), 3092–3120 | DOI | MR | Zbl
[39] J. J. Goeman, “L1 penalized estimation in the Cox proportional hazards model”, Biom. J., 52:1 (2010), 70–84 | DOI | MR | Zbl
[40] R. Tibshirani, “The lasso method for variable selection in the Cox model”, Statistics in Medicine, 16:4 (1997), 385–395 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[41] N. Simon, J. Friedman, T. Hastie, R. Tibshirani, “Regularization paths for Cox's proportional hazards model via coordinate descent”, Journal of Statistical Software, 39:5 (2011), 1–13 | DOI
[42] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm”, Computers Structures, 169 (2016), 1–12 | DOI
[43] S. Kawano, “Selection of tuning parameters in bridge regression models via Bayesian information criterion”, Statistical Papers, 55:4 (2014), 1207–1223 | DOI | MR | Zbl
[44] Z. Y. Algamal, M. H. Lee, “Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification”, Expert Systems with Applications, 42:23 (2015), 9326–9332 | DOI
[45] Z. Y. Algamal, “Shrinkage parameter selection via modified cross-validation approach for ridge regression model”, Communications in Statistics-Simulation and Computation, 49:7 (2020), 1922–1930 | DOI | MR
[46] Z. Y. Algamal, “A new method for choosing the biasing parameter in ridge estimator for generalized linear model”, Chemometrics and Intelligent Laboratory Systems, 183 (2018), 96–101 | DOI
[47] A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo, R. I. Fisher, R. D. Gascoyne, H. K. Muller-Hermelink, Smeland, E. B., Giltnane, J. M. et al, “The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma”, New England Journal of Medicine, 346:25 (2002), 1937–1947 | DOI
[48] H. C. Van Houwelingen, T. Bruinsma, A. A. Hart, L. J. Van't Veer, L. F. Wessels, “Cross-validated Cox regression on microarray gene expression data”, Statistics in Medicine, 25:18 (2006), 3201–3216 | DOI | MR
[49] D. G. Beer, S. L. Kardia, C. C. Huang, T. J. Giordano, A. M. Levin, D. E. Misek, L. Lin, G. Chen, T. G. Gharib, D. G. Thomas et al, “Gene-expression profiles predict survival of patients with lung adenocarcinoma”, Nature Medicine, 8:8 (2002), 816–824 | DOI