Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a17, author = {V. S. Bystrov and E. V. Paramonova and S. V. Filippov and L. A. Avakyan and M. V. Chaikina and N. V. Eremina and S. V. Makarova and N. V. Bulina}, title = {Zinc-substituted structures of hydroxyapatite: {Modeling} and experiment}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {580--601}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a17/} }
TY - JOUR AU - V. S. Bystrov AU - E. V. Paramonova AU - S. V. Filippov AU - L. A. Avakyan AU - M. V. Chaikina AU - N. V. Eremina AU - S. V. Makarova AU - N. V. Bulina TI - Zinc-substituted structures of hydroxyapatite: Modeling and experiment JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 580 EP - 601 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a17/ LA - ru ID - MBB_2023_18_2_a17 ER -
%0 Journal Article %A V. S. Bystrov %A E. V. Paramonova %A S. V. Filippov %A L. A. Avakyan %A M. V. Chaikina %A N. V. Eremina %A S. V. Makarova %A N. V. Bulina %T Zinc-substituted structures of hydroxyapatite: Modeling and experiment %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 580-601 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a17/ %G ru %F MBB_2023_18_2_a17
V. S. Bystrov; E. V. Paramonova; S. V. Filippov; L. A. Avakyan; M. V. Chaikina; N. V. Eremina; S. V. Makarova; N. V. Bulina. Zinc-substituted structures of hydroxyapatite: Modeling and experiment. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 580-601. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a17/
[1] M. Epple, K. Ganesan, R. Heumann, J. Klesing, A. Kovtun, S. Neumann, V. Sokolova, “Application of calcium phosphate nanoparticles in biomedicine”, Journal of Materials Chemistry, 20:1 (2010), 18–23 | DOI | MR
[2] Ducheyne P., K. Healy, D. E. Hutmacher, D. W. Grainger, C. J. Kirkpatrick (eds.), Comprehensive Biomaterials II, 2nd ed, Elsevier, Amsterdam, 2017
[3] T. Duminis, S. Shahid, R. G. Hill, “Apatite Glass-Ceramics: A Review”, Front. Mater, 3 (2017), 59 | DOI
[4] B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, Biomaterials Science, Academic Press, Oxford, 2013
[5] S. M. Barinov, V. S. Komlev, Biokeramika na osnove fosfatov kaltsiya, Nauka, M., 2005, 204 pp.
[6] S. V. Dorozhkin, “Calcium orthophosphate deposits: Preparation, properties and biomedical applications”, Mater. Sci. Eng. C Mater. Biol. Appl., 55 (2015), 272–326 | DOI
[7] J. T.B. Ratnayake, M. Mucalo, G. J. Dias, “Substituted hydroxyapatites for bone regeneration: A review of current trends”, J. Biomed. Mater. Res. B Appl. Biomater., 105 (2017), 1285–1299 | DOI
[8] J. C. Elliot, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier, Amsterdam, 1994
[9] M. I. Kay, R. A. Young, A. S. Posner, “Crystal Structure of Hydroxyapatite”, Nature (London), 204 (1964), 1050–1052 | DOI
[10] M. Mucalo, Hydroxyapatite (HAp) for Biomedical Applications, Elsevier, Amsterdam, 2015
[11] M. Supova, “Substituted hydroxyapatites for biomedical applications: A review”, Ceram. Int., 41 (2015), 9203–9231 | DOI
[12] A. Fihri, C. Len, R. S. Varma, A. Solhy, “Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis”, Coord. Chem. Rev., 347 (2017), 48–76 | DOI
[13] V. S. Bystrov, “Computational Studies of the Hydroxyapatite Nanostructures, Peculiarities and Properties”, Math. Biol. Bioinform., 12 (2017), 14–54 | DOI
[14] V. Bystrov, A. Bystrova, Y. Dekhtyar, I. A. Khlusov, V. Pichugin, K. Prosolov, Y. Sharkeev, “Electrical functionalization and fabrication of nanostructured hydroxyapatite coatings”, Bioceramics and Biocomposites: From Research to Clinical Practice, ed. A. Jiulian, John Wiley Sons, Inc., Hoboken, 2019, 149–190 | DOI
[15] B. Leon, J. A. Janson, Thin Calcium Phosphate Coatings for Medical Implants, Springer, Berkkin, 2009
[16] K. Baltacis, V. Bystrov, A. Bystrova, Y. Dekhtyar, T. Freivalds, J. Raines, K. Rozenberga, H. Sorokins, M. Zeidaks, “Physical fundamentals of biomaterials surface electrical functionalization”, Materials, 13 (2020), 4575 | DOI
[17] V. S. Bystrov, C. Piccirillo, D. M. Tobaldi, P. M.L. Castro, J. Coutinho, S. Kopyl, R. C. Pullar, “Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: Comparing modelling with measured data”, Appl. Catal. B Environ., 196 (2016), 100–107 | DOI
[18] E. X. Figueroa-Rosales, J. Martinez-Juarez, E. Garcia-Diaz, D. Hernandez-Cruz, S. A. Sabinas-Hernandez, M. J. Robles-Aguila, “Photoluminescent Properties of Hydroxyapatite and Hydroxyapatite/Multi-Walled Carbon Nanotube Composites”, Crystals, 11 (2021), 832 | DOI
[19] A. Oulguidoum, K. Bouiahya, H. Bouyarmane, A. Talbaoui, J. M. Nunzi, A. Laghzizil, “Mesoporous nanocrystalline sulfonated hydroxyapatites enhance heavy metal removal and antimicrobial activity”, Sep. Purif. Technol., 255 (2020), 117777 | DOI
[20] P. Yang, P. Yang, X. Teng, J. Lin, L. Huang, “A novel luminescent mesoporous silica/apatite composite for controlled drug release”, J. Mater. Chem., 21 (2011), 5505–5510 | DOI
[21] Y. Wen, J. Li, H. Lin, H. Huang, K. Song, K. Duan, T. Guo, J. Weng, “Improvement of Drug-Loading Properties of Hydroxyapatite Particles Using Triethylamine as a Capping Agent: A Novel Approach”, Crystals, 11 (2021), 703 | DOI
[22] L. Degli Esposti, F. Carella, A. Adamiano, A. Tampieri, M. Iafisco, “Calcium phosphate based nanosystems for advanced targeted nanomedicine”, Drug Dev. Ind. Pharm., 44 (2018), 1223–1238 | DOI
[23] L. Avakyan, E. Paramonova, V. Bystrov, J. Coutinho, S. Gomes, G. Renaudin, Iron in Hydroxyapatite: Interstitial or Substitution Sites?, Nanomaterials, 11 (2021), 2978 | DOI
[24] S. Mondal, P. Manivasagan, S. Bharathiraja, M. Santha Moorthy, H. H. Kim, H. Seo, K. D. Lee, J. Oh, “Magnetic hydroxyapatite: A promising multifunctional platform for nanomedicine application”, Int. J. Nanomed., 12 (2017), 8389–8410 | DOI
[25] A. Tampieri, T. D'Alessandro, M. Sandri, S. Sprio, E. Landi, L. Bertinetti, S. Panseri, G. Pepponi, J. Goettlicher, M. Banobre-Lopez et al, “Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite”, Acta Biomater., 8 (2012), 843–851 | DOI
[26] J. D. Currey, Bones Structures and Mechanics, 2nd ed., Princeton University Press, Princeton, 2002
[27] J. C. Crockett, M. J. Rogers, F. P. Coxon, L. J. Hocking, M. H. Helfrich, “Bone remodelling at a glance”, Journal of Cell Science, 124:7 (2011), 991–998 | DOI | MR
[28] K. J. Koester, J. W. Ager III, R. O. Ritchie, “The true toughness of human cortical bone measured with realistically short cracks”, Nat. Mater., 7 (2008), 672–677 | DOI
[29] S. Weiner, P. A. Price, “Disaggregation of bone into crystals”, Calcif. Tissue Int., 39 (1986), 365–375 | DOI
[30] N. Kanzaki, K. Onuma, A. Ito, K. Teraoka, T. Tateishi, S. Tsutsumi, “Direct growth rate measurement of hydroxyapatite single crystal by moire phase shift interferometry”, J. Phys. Chem. B, 102 (1998), 6471–6476 | DOI
[31] J. M. Hughes, M. Cameron, K. D. Crowley, “Structural variations in natural F, OH, and Cl apatites”, American Mineralogist, 74 (1989), 870–876 (accessed: 07.12.2023) http://rruff.geo.arizona.edu/AMS/result.php
[32] T. Tite, A. C. Popa, L. M. Balescu, I. M. Bogdan, I. Pasuk, J. M.F. Ferreira, G. E. Stan, “Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods”, Materials, 11 (2018), 2081 | DOI
[33] S. P. Khanal, H. Mahfuz, A. J. Rondinone, T. Leventouri, “Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon”, Mater. Sci. Eng. C Mater. Biol. Appl., 60 (2016), 204–210 | DOI
[34] I. Uysal, F. Severcan, A. Tezcaner, Z. Evis, “Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite”, Prog. Nat. Sci., 24 (2014), 340–349 | DOI
[35] M. V. Chaikina, N. V. Bulina, I. Yu. Prosanov, A. V. Ischenko, “Anionnye zamescheniya v protsesse mekhanokhimicheskogo sinteza gidroksiapatita”, Khimiya v interesakh ustoichivogo razvitiya, 27 (2019), 345–352 | DOI
[36] A. Bigi, E. Foresti, R. Gregorini, A. Ripamonti, N. Roveri, J. Shah, “The role of magnesium on the structure of biological apatites”, Calcif. Tissue Int., 50 (1992), 439–444 | DOI
[37] F. Ren, Y. Leng, R. Xin, X. Ge, “Synthesis, Characterization and Ab Initio Simulation of Magnesium-Substituted Hydroxyapatite”, Acta Biomater., 6 (2010), 2787–2796 | DOI
[38] W. Mroz, B. Budner, R. Syroka, K. Niedzielski, G. Golanski, A. Slosarczyk, D. Schwarze, T. E. Douglas, “In vivo implantation of porous titanium, alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103:1 (2015), 151–158 | DOI
[39] W. Mroz, A. Bombalska, S. Burdynska, M. Jedynski, A. Prokopiuk, B. Budner, A. Slosarczyk, A. Zima, E. Menaszek, A. Scislowska-Czarnecka et al, “Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture”, J. Mol. Struct., 977 (2010), 145–152 | DOI
[40] L. M. Silva, D. S. Tavares, E. A. Santos, “Isolating the Effects of Mg$^{2+}$, Mn$^{2+}$ and Sr$^{2+}$ Ions on Osteoblast Behavior from those Caused by Hydroxyapatite Transformation”, Materials Research, 23:2 (2020) | DOI
[41] I. Fadeeva, V. Kalita, D. Komlev, A. Radiuk, A. Fomin, G. Davidova, N. Fursova, F. Murzakhanov, M. Gafurov, M. Fosca et al, “In Vitro Properties of Manganese Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma”, Materials, 13 (2020), 4411 | DOI
[42] Fadeeva I.V., Fomin A.S., Barinov S.M., Davydova G.A., Selezneva I.I., Preobrazhenskii I.I., Rusakov M.K., Fomina A.A., Volchenkova V.A., “Synthesis and Properties of Manganese-Containing Calcium Phosphate Materials”, Inorganic Materials, 56:7 (2020), 700–706 | DOI | DOI
[43] H. Liu, X. Cui, X. Lu, X. Liu, L. Zhang, T. S. Chan, “Mechanism of Mn incorporation into hydroxyapatite: Insights from SR-XRD, Raman, XAS, and DFT calculation”, Chem. Geol., 579 (2021), 120354 | DOI
[44] S. Lala, T. Maity, M. Singha, K. Biswas, S. Pradhan, “Effect of doping (Mg, Mn, Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying”, Ceram. Int., 43 (2017), 2389–2397 | DOI
[45] I. V. Fadeeva, N. V. Bakunova, V. S. Komlev, “Tsink- i serebrosoderzhaschie gidroksiapatity: sintez i svoistva”, Doklady Akademii nauk, 442:6 (2012), 780–783
[46] M. V. Chaikina, N. V. Bulina, I. Yu. Prosanov, O. B. Vinokurova, A. V. Ischenko, “Formirovanie struktury tsink-zameschennogo gidroksiapatita v protsesse mekhanokhimicheskogo sinteza”, Neorganicheskie materialy, 56:4 (2020), 422–428 | DOI
[47] N. V. Bulina, O. V. Vinokurova, N. V. Eremina, I. Y. Prosanov, V. R. Khusnutdinov, M. V. Chaikina, “Features of solid-phase mechanochemical synthesis of hydroxyapatite doped by copper and zinc ions”, Journal of Solid State Chemistry, 296 (2021), 121973 | DOI
[48] M. V. Chaikina, N. V. Bulina, I. Yu. Prosanov, O. V. Vinokurova, A. V. Ischenko, “Structure formation of zinc-substituted hydroxyapatite during mechanochemical synthesis”, Inorg. Mater., 56:4 (2020), 402–408 | DOI
[49] N. V. Bulina, M. V. Chaikina, A. S. Andreev, O. B. Lapina, A. V. Ishchenko, I. Yu. Prosanov, K. B. Gerasimov, L. A. Solovyov, “Mechanochemical Synthesis of SiO44-Substituted Hydroxyapatite, Part II - Reaction Mechanism, Structure, and Substitution Limit”, Eur. J. Inorg. Chem., 2014:28 (2014), 4810–4825 | DOI
[50] N. V. Bulina, M. V. Chaikina, I. Y. Prosanov, “Mechanochemical Synthesis of Sr Substituted Hydroxyapatite”, Inorg. Mater., 54 (2018), 820–825 | DOI
[51] N. V. Bulina, S. V. Makarova, I. Y. Prosanov, O. B. Vinokurova, N. Z. Lyakhov, “Structure and thermal stability of fluorhydroxyapatite and fluorapatite obtained by mechanochemical method”, J. Solid State Chem., 282 (2020), 121076 | DOI
[52] N. V. Bulina, S. V. Makarova, S. G. Baev, A. A. Matvienko, K. B. Gerasimov, O. A. Logutenko, V. S. Bystrov, “A Study of Thermal Stability of Hydroxyapatite”, Minerals, 11 (2021), 1310 | DOI
[53] S. Aryal, K. Matsunaga, W. Y. Ching, “Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP)”, J. Mech. Behav. Biomed. Mater., 47 (2015), 135–146 | DOI
[54] K. Matsunaga, A. Kuwabara, “First-principles study of vacancy formation in hydroxyapatite”, Phys. Rev. B, 75 (2007), 014102 | DOI
[55] A. Slepko, A. A. Demkov, “First-principles study of the biomineral hydroxyapatite”, Phys. Rev. B Condens. Matter Mater. Phys., 84. (2011), 134108 | DOI
[56] A. V. Sadetskaya, N. P. Bobrysheva, M. G. Osmolowsky, O. M. Osmolovskaya, M. A. Voznesenskiy, “Correlative experimental and theoretical characterization of transition metal doped hydroxyapatite nanoparticles fabricated by hydrothermal method”, Mater. Charact., 173 (2021), 110911 | DOI
[57] V. S. Bystrov, J. Coutinho, A. V. Bystrova, Y. D. Dekhtyar, R. C. Pullar, A. Poronin, E. Palcevskis, A. Dindune, B. Alkan, C. Durucan, “Computational study of the hydroxyapatite structures, properties and defects”, J. Phys. D Appl. Phys., 48 (2015), 195302 | DOI
[58] V. Bystrov, E. Paramonova, L. Avakyan, J. Coutinho, N. Bulina, “Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects”, Nanomaterials, 11 (2021), 2752 | DOI
[59] L. A. Avakyan, E. V. Paramonova, J. Coutinho, S. Oberg, V. S. Bystrov, L. A. Bugaev, “Optoelectronics and defect levels in hydroxyapatite by first-principles”, J. Chem. Phys, 148 (2018), 154706 | DOI
[60] V. S. Bystrov, L. A. Avakyan, E. V. Paramonova, J. Coutinho, “Sub-Band Gap Absorption Mechanisms Involving Oxygen Vacancies in Hydroxyapatite”, J. Chem. Phys., 123 (2019), 4856–4865 | DOI
[61] V. S. Bystrov, E. V. Paramonova, L. A. Avakyan, N. V. Eremina, S. V. Makarova, N. V. Bulina, “Effect of Magnesium Substitution on Structural Features and Properties of Hydroxyapatite”, Materials, 16 (2023), 5945 | DOI
[62] V. S. Bystrov, E. V. Paramonova, A. V. Bystrova, L. A. Avakyan, S. V. Makarova, D. D. Isaev, N. V. Bulina, “Vliyanie zameschenii atomov Ca na atomy Sr, Mg, Mn, Fe v strukture gidroksiapatita i izmenenii elektricheskogo polya na ego fizicheskie svoistva, vazhnye dlya biomeditsiny”, Sbornik nauchnykh trudov VII s'ezda biofizikov Rossii, v. 1, KubGTU, Krasnodar, 2023, 278–279 | DOI
[63] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett., 77 (1996), 3865–3868 | DOI
[64] J. Heyd, G. E. Scuseria, M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential”, J. Chem. Phys., 118 (2003), 8207–8215 | DOI
[65] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals”, J. Chem. Phys., 125 (2006), 224106 | DOI
[66] Quantum ESPRESSO, (accessed: 07.12.2023) https://www.quantum-espresso.org/
[67] M. Schlipf, F. Gygi, “Optimization algorithm for the generation of ONCV pseudopotentials”, Computer Phys. Commun., 196 (2015), 36–44 | DOI | Zbl
[68] D. R. Hamann, “Optimized norm-conserving Vanderbilt pseudopotentials”, Phys. Rev., B88 (2013), 085117 | DOI
[69] J. Nocedal, S. J. Wright, Numerical Optimization, Springer, New York, 2006 | MR | Zbl
[70] M. Avriel, Nonlinear Programming: Analysis and Methods, Dover Publishing, 2003 | MR | Zbl
[71] S. V. Filippov, R. V. Polozov, V. S. Sivozhelezov, “Vizualizatsiya prostranstvennykh struktur (bio)makromolekul v vide podobnykh gipsometricheskim kart”, Preprinty IPM im. M.V. Keldysha, 2019, 061, 14 pp. | DOI