Mathematical model of phytoplankton interspecific competition for food resource
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 568-579.

Voir la notice de l'article provenant de la source Math-Net.Ru

The phytoplankton in an aquatic ecosystem is the basis of its life activity and the main producing link. The functioning of phytoplankton in same time depends on environmental factors: mineral nutrition, photosynthetically active solar radiation, water temperature and other less significant ones. Sunlight is a stable factor, varying predictably over time and space. The water temperature is the small regulatory factor. Concentrations of mineral substances can change quite quickly and significantly, this much influences on plant organisms. Thus, mineral nutrition is a basic environmental factor of influence to phytoplankton. On the other hand, in large aquatic basin such as seas and oceanic areas the distribution of living organisms is very heterogeneous in space. These two aspects – nutrient and spatial heterogeneity – are the focus of this article. A model of competitive interaction is considered using the example of two species of phytoplankton. The phytoplankton move passively in water what is simulated by the diffusion process. The model contains one non-trivial stationary and spatially homogeneous equilibrium and two trivial ones, i.e. degenerate in at least one species of phytoplankton. Trivial equilibria are stable only in some “degenerate” situations. The non-trivial equilibrium in “normal” conditions is stable to temporal and spatial disturbances. The behavior of solutions near a nontrivial equilibrium for a stationary living environment and in cases of its nonstationary is studied. Perturbation of a nontrivial equilibrium in a stationary environment leads to relatively long-term deviations from equilibrium and a slow return to it. The instability of trivial equilibria increases the spatial heterogeneity of solutions. At the same time, the nontrivial equilibrium computationally demonstrates weak properties of global stability in time. The unsteadiness of the environment is simulated by the unsteadiness of the influx of nutrients. It has been shown that the distribution of nutrients can lead to significant heterogeneity in the distribution of individuals across the spatial habitat.
@article{MBB_2023_18_2_a16,
     author = {A. I. Abakumov and I. S. Kozitskaya},
     title = {Mathematical model of phytoplankton interspecific competition for food resource},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {568--579},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a16/}
}
TY  - JOUR
AU  - A. I. Abakumov
AU  - I. S. Kozitskaya
TI  - Mathematical model of phytoplankton interspecific competition for food resource
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 568
EP  - 579
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a16/
LA  - ru
ID  - MBB_2023_18_2_a16
ER  - 
%0 Journal Article
%A A. I. Abakumov
%A I. S. Kozitskaya
%T Mathematical model of phytoplankton interspecific competition for food resource
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 568-579
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a16/
%G ru
%F MBB_2023_18_2_a16
A. I. Abakumov; I. S. Kozitskaya. Mathematical model of phytoplankton interspecific competition for food resource. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 568-579. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a16/

[1] P. A. Moiseev, Biologicheskie resursy Mirovogo okeana, Agropromizdat, M., 1989

[2] Menshutkin, V. V., L. A. Rukhovets, N. N. Filatov, “Ecosystem modeling of freshwater lakes (review): 2. Models of freshwater lake's ecosystem”, Water resources, 41:1 (2014), 32–45 | DOI

[3] P. G. Falkowski, “The Ocean invisible fores”, Scientific American, 54 (2002), 54–61 | DOI

[4] Z. Z. Finenko, V. V. Suslin, T. Ya. Churilova, “Regionalnaya model dlya rascheta pervichnoi produktsii Chernogo morya s ispolzovaniem sputnikovogo skanera tsveta SeaWiFS”, Morskoi ekologicheskii zhurnal, 8:1 (2009), 81–106 | MR

[5] S. Ya. Pak, A. I. Abakumov, “Phytoplankton in the Sea of Okhotsk along Western Kamchatka: warm vs cold years”, Ecological Modelling, 433:1 (2020), 109244 | DOI

[6] A. M. Edwards, J. Brindley, “Oscillatory behaviour in a three-component plankton population model”, Dynamics and Stability of Systems, 11:4ggg (1996), 347–370 | DOI | Zbl

[7] L. V. Ilyash, I. G. Radchenko, L. L. Kuznetsov, A. P. Lisitsyn, D. M. Martynova, A. N. Novigatskii, A. L. Chultsova, “Prostranstvennaya variabelnost sostava, obiliya i produktsii fitoplanktona Belogo morya v kontse leta”, Okeanologiya, 51:1 (2011), 24–32

[8] S. P. Zakharkov, V. B. Lobanov, T. N. Gordeichuk, T. V. Morozova, E. A. Shtraikhert, “Prostranstvennaya izmenchivost khlorofilla “a” i vidovogo sostava fitoplanktona v severo-zapadnoi chasti yaponskogo morya v zimnii period”, Okeanologiya, 52:3 (2012), 381–391

[9] S. J. Jang, J. Baglama, “Nutrient-plankton models with nutrient recycling”, Computers Mathematics with Applications, 49:2-3 (2005), 375–387 | DOI | MR | Zbl

[10] R. Geider, H. MacIntyre, T. Kana, “A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature”, Limnology and Oceanography, 43:4 (1998), 679–694 | DOI

[11] G. P. Neverova, O. L. Zhdanova, “Sravnitelnyi analiz dinamiki prostykh matematicheskikh modelei planktonnogo soobschestva c razlichnymi funktsiyami otklika”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 465–480 | DOI | MR

[12] T. Platt, S. Sathyendranath, “Estimators of primary production for interpretation of remotely sensed data on ocean color”, Journal of Geophysical Research, 98:8 (1993), 14561–14576 | DOI

[13] S. I. Pogosyan, I. V. Konyukhov, A. B. Rubin, A. V. Kuznetsova, E. N. Voronova, “Vliyanie defitsita azota na rost i sostoyanie fotosinteticheskogo apparata zelenoi vodorosli Shlamydomonas reinhardtii”, Voda: khimiya i ekologiya, 2012, no. 4, 68–76

[14] F. Mairet, O. Bernard, T. Lacour, A. Sciandra, “Modelling microalgae growth in nitrogen limited photobioreactor for estimating biomass, carbohydrate and neutral lipid productivities”, IFAC Proceedings, 44, 2011, 10591–10596

[15] V. A. Silkin, A. I. Abakumov, L. A. Pautova, S. V. Pakhomova, A. V. Lifanchuk, “Mechanisms of regulation of invasive processes in phytoplankton on the example of the north-eastern part of the Black Sea”, Aquatic Ecology, 50:2 (2016), 221–234 | DOI

[16] A. I. Abakumov, S. Ya. Pak, “Modelirovanie protsessa fotosinteza i otsenka dinamiki biomassy fitoplanktona na osnove modeli Drupa”, Matematicheskaya biologiya i bioinformatika, 16:2 (2021), 380–393 | DOI

[17] A. I. Abakumov, S. Ya. Pak, “Dva podkhoda k modelirovaniyu dinamiki biomassy fitoplanktona na osnove modeli Drupa”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 401–422 | DOI

[18] D. L. DeAngelis, Dynamics of nutrient cycling and food webs, Springer, 2012, 288 pp. | DOI

[19] L. E. Elsgolts, Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969

[20] V. A. Vasilev, Yu. M. Romanovskii, V. G. Yakhno, Avtovolnovye protsessy, Nauka, M., 1987, 240 pp.

[21] Kuznetsov S. P., Dinamicheskii khaos, Fiz. mat. lit., M., 2001, 296 pp. | MR

[22] A. M. Turing, “The Chemical Basis of Morphogenesis”, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237:641 (1952), 37–72 | DOI | MR | Zbl

[23] A. Longhurst, S. Sathyendranath, T. Platt, C. Caverhill, “An estimate of global primary production in the ocean from satellite radiometer data”, Journal of Plankton Research, 17:6 (1995), 1245–1271 | DOI

[24] Yu. M. Romanovskii, N. V. Stepanova, D. S. Chernavskii, Matematicheskaya biofizika, Nauka, M., 1984, 304 pp. | MR