Stochastic modeling in immunology based on a stage-dependent framework with non-Markov constraints for individual cell and pathogen dynamics
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 543-567.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a systematic approach to modelling the responses of the immune system to virus infections. Two continuous-discrete stochastic models arising in mathematical immunology are developed and computationally implemented. The variables of the models are integer random variables that denote the quantity of individuals (cells and viral particles), and sets of unique types of individuals that take into account the current state and history of stay of individuals in some stages of their development. The distribution laws of the durations of the mentioned stages are different from exponential or geometric. A probabilistic description of a one-stage stochastic model of population dynamics is presented. A stochastic model of the development of HIV-1 infection in the lymph node in the initial period after infection of a healthy person is formulated. A computational algorithm based on the Monte Carlo method is given. Each of the stochastic models is complemented by a deterministic analogue in the form of integral and delay differential equations. The results of numerical simulation are presented.
@article{MBB_2023_18_2_a15,
     author = {N. V. Pertsev and K. K. Loginov},
     title = {Stochastic modeling in immunology based on a stage-dependent framework with {non-Markov} constraints for individual cell and pathogen dynamics},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {543--567},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a15/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - K. K. Loginov
TI  - Stochastic modeling in immunology based on a stage-dependent framework with non-Markov constraints for individual cell and pathogen dynamics
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 543
EP  - 567
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a15/
LA  - en
ID  - MBB_2023_18_2_a15
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A K. K. Loginov
%T Stochastic modeling in immunology based on a stage-dependent framework with non-Markov constraints for individual cell and pathogen dynamics
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 543-567
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a15/
%G en
%F MBB_2023_18_2_a15
N. V. Pertsev; K. K. Loginov. Stochastic modeling in immunology based on a stage-dependent framework with non-Markov constraints for individual cell and pathogen dynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 543-567. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a15/

[1] G. I. Marchuk, Mathematical Models in Immunology. Numerical Methods and Experiments, Nauka, M., 1991, 300 pp. | MR | Zbl

[2] H. T. Banks, D. M. Bortz, “A parameter sensitivity methodology in the context of HIV delay equation models”, J. Math. Biol., 50 (2005), 607–625 | DOI | MR | Zbl

[3] K. A. Pawelek, S. Liu, F. Pahlevani, L. Rong, “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci, 235:1 (2012), 98–109 | DOI | MR | Zbl

[4] T. Luzyanina, J. Cupovic, B. Ludewig, G. Bocharov, “Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division”, J. Math. Biol, 69 (2014), 1547–1583 | DOI | MR | Zbl

[5] M. Pitchaimani, C. Monica, “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput, 48 (2015), 293–319 | DOI | MR | Zbl

[6] Yu. Nechepurenko, M. Khristichenko, D. Grebennikov, G. Bocharov, “Bistability analysis of virus infection models with time delays”, Disc. Cont. Dyn. Syst. Series, 13:9 (2020), 2385–2401 | DOI | MR | Zbl

[7] N. Pertsev, K. Loginov, G. Bocharov, “Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays”, Disc. Cont. Dyn. Syst. Series, 13:9 (2020), 2365–2384 | DOI | MR | Zbl

[8] N. V. Pertsev, G. A. Bocharov, K. K. Loginov, “Numerical Simulation of T-Lymphocyte Population Dynamics in a Lymph Node”, J. Appl. Ind. Math, 16:4 (2022), 737–750 | DOI | MR

[9] B. J. Pichugin, N. V. Pertsev, V. A. Topchii, K. K. Loginov, “Stochastic modeling of age-structured population with time and size dependence of immigration rate”, Russ. J. Numer. Anal. Math. Model, 33:5 (2018), 289–299 | DOI | MR | Zbl

[10] N. V. Pertsev, B. Y. Pichugin, K. K. Loginov, “Stochastic Analog of the Dynamic Model of HIV-1 Infection Described by Delay Differential Equations”, J. Appl. Ind. Math, 13:1 (2019), 103–117 | DOI | MR | Zbl

[11] G. A. Bocharov, K. K. Loginov, N. V. Pertsev, V. A. Topchii, “Direct statistical modeling of HIV-1 infection based on a non-Markovian stochastic model”, Comp. Math. and Math. Phys, 61:8 (2021), 1229–1251 | DOI | MR | Zbl

[12] A. D. Barbour, M. J. Luczak, “Individual and patch behaviour in structured metapopulation models”, J. Math. Biol, 71:3 (2015), 713–733 | DOI | MR | Zbl

[13] O. Hyrien, S. A. Peslak, N. M. Yanev, J. Palis, “Stochastic modeling of stress erythropoiesis using a two-type age-dependent branching process with immigration”, J. Math. Biol, 70:7 (2015), 1485–1521 | DOI | MR | Zbl

[14] T. Chou, C. D. Greenman, “A Hierarchical Kinetic Theory of Birth, Death and Fission in Age-Structured Interacting Populations”, J. Stat. Phys, 164:1 (2016), 49–76 | DOI | MR | Zbl

[15] Konstantin K. Loginov, Nikolay V. Pertsev, Valentin A. Topchii, “Stochastic Modeling of Compartmental Systems with Pipes”, Math. Biol. Bioinf, 14:1 (2019), 188–203 | DOI

[16] N. Pertsev, K. Loginov, A. Lukashev, Yu. Vakulenko, “Stochastic Modeling of Dynamics of the Spread of COVID-19 Infection Taking Into Account the Heterogeneity of Population According To Immunological, Clinical and Epidemiological Criteria”, Math. Biol. Bioinf, 17:1 (2022), 43–81 | DOI

[17] N. Pertsev, V. Topchii, K. Loginov, “Stochastic Modeling of the Epidemic Process Based On a Stage-Dependent Model with Non-Markov Constraints for Individuals”, Math. Biol. Bioinf, 18:1 (2023), 145–176 | DOI | MR

[18] I. I. Geehman, A. V. Skorohod, Introduction to the Theory of Random Processes, Nauka, M., 1977, 568 pp. | MR

[19] M. A. Marchenko, G. A. Mikhailov, “Parallel realization of statistical simulation and random number generators”, Russ. J. Numer. Anal. Math. Model, 17:1 (2002), 113–124 | DOI | MR | Zbl

[20] M. Marchenko, “PARMONC A Software Library for Massively Parallel Stochastic Simulation”, Parallel Computing Technologies, Lecture Notes in Computer Science, 6873, Springer-Verl., Berlin–Heidelberg, 2011, 302–316 | DOI

[21] G. A. Mikhailov, A. V. Voitishek, Numerical Statistical Simulation. Monte-Carlo Methods, Akademia, M., 2006, 367 pp. | MR

[22] N. V. Pertsev, B. J. Pichugin, A. N. Pichugina, “Investigation of solutions to one family of mathematical models of living systems”, Russian Math, 61:9 (2017), 48–60 | DOI | MR | Zbl

[23] G. Kramer, Mathematical Methods of Statistics, Princeton Univ. Press, Princeton, 1999, 575 pp. | MR

[24] A. K. Abbas, A. H. Likhtman, Pillai S. Basic Immunology, Functions and Disorders of the Immune System, Geotar Media, M., 2022, 404 pp.

[25] Q. J. Sattentau, M. Stevenson, “Macrophages and HIV-1: An Unhealthy Constellation”, Cell Host Microbe, 19:3 (2016), 304–310 | DOI

[26] Y. Dimopoulos, E. Moysi, C. Petrovas, “The Lymph Node in HIV Pathogenesis”, Curr. HIV/AIDS Rep, 14 (2017), 133–140 | DOI

[27] Sevastijanov B. A., Branching Processes, Nauka, M., 1971, 436 pp. | MR

[28] P. Jagers, Branching Processes with Biological Applications, Wiley, New York, 1975, 268 pp. | MR | Zbl

[29] N. V. Pertsev, “Stability of Linear Delay Differential Equations Arising in Models of Living Systems”, Sib. Adv. Math, 30:1 (2020), 43–54 | DOI | MR

[30] V. B. Kolmanovskii, V. R. Nosov, Stability and Periodic Modes of Regulated Systems with Delay, Nauka, M., 1981, 448 pp. | MR