Multilevel mathematical model of epileptic seizures
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 479-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents novel developed modular mathematical model of epileptic seizures, obtained by combining and modifying existing models of epilepsy, which for the first time makes it possible to simulate the dynamics of seizure onset, propagation and termination simultaneously at the cellular and regional levels of brain organization. At the level of individual cells, the dynamics of AMPA receptor trafficking, changes in the concentrations of intra- and extracellular ions, membrane depolarization, and other biophysical processes responsible for the development of ictal activity were calculated. Local field potentials of brain regions were modeled at the regional level taking into account cellular processes and the large-scale structure of the brain network. It is shown that the dynamics of submodels used in the structure of the multilevel model corresponds to the dynamics of the original models, the authors of which validated them with experimental data. The theoretical justification of the connections between submodels was given.
@article{MBB_2023_18_2_a14,
     author = {P. Yu. Kondrakhin and F. A. Kolpakov},
     title = {Multilevel mathematical model of epileptic seizures},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {479--516},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a14/}
}
TY  - JOUR
AU  - P. Yu. Kondrakhin
AU  - F. A. Kolpakov
TI  - Multilevel mathematical model of epileptic seizures
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 479
EP  - 516
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a14/
LA  - ru
ID  - MBB_2023_18_2_a14
ER  - 
%0 Journal Article
%A P. Yu. Kondrakhin
%A F. A. Kolpakov
%T Multilevel mathematical model of epileptic seizures
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 479-516
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a14/
%G ru
%F MBB_2023_18_2_a14
P. Yu. Kondrakhin; F. A. Kolpakov. Multilevel mathematical model of epileptic seizures. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 479-516. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a14/

[1] O. Devinsky, A. Vezzani, T. J. O'Brien, N. Jette, I. E. Scheffer, M. de Curtis, P. Perucca, “Nature Reviews Disease Primers”, Epilepsy, 4:1 (2018) | DOI

[2] Z. Chen, M. J. Brodie, D. Liew, P. Kwan, “Treatment Outcomes in Patients With Newly Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs”, JAMA Neurology, 75:3 (2018), 279 | DOI

[3] D. Golomb, Y. Amitai, “Propagating Neuronal Discharges in Neocortical Slices: Computational and Experimental Study”, Journal of Neurophysiology, 78:3 (1997), 1199–1211 | DOI

[4] A. Compte, M. V. Sanchez-Vives, D. A. McCormick, X.-J. Wang, “Cellular and Network Mechanisms of Slow Oscillatory Activity (1 Hz) and Wave Propagations in a Cortical Network Model”, Journal of Neurophysiology, 89:5 (2003), 2707–2725 | DOI

[5] M. Bazhenov, I. Timofeev, F. Frohlich, T. J. Sejnowski, “Cellular and network mechanisms of electrographic seizures”, Drug Discovery Today: Disease Models, 5:1, 45–57 | DOI | MR

[6] H. Zhang, J. Su, Q. Wang, Y. Liu, L. Good, J. M. Pascual, “Predicting seizure by modeling synaptic plasticity based on EEG signals a case study of inherited epilepsy”, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 330–343 | DOI | MR | Zbl

[7] T. Proix, F. Bartolomei, M. Guye, V. K. Jirsa, “Individual brain structure and modelling predict seizure propagation”, Brain, 140:3 (2017), 641–654 | DOI

[8] L. P. Sanz, S. A. Knock, M. M. Woodman, L. Domide, J. Mersmann, A. R. McIntosh, V. K. Jirsa, “The Virtual Brain: a simulator of primate brain network dynamics”, Frontiers in Neuroinformatics, 7:10 (2013) | DOI

[9] J. Makhalova, S. Medina Villalon, H. Wang, B. Giusiano, M. Woodman, C. Benar, M. Guye, V. Jirsa, F. Bartolomei, “Virtual epileptic patient brain modeling: Relationships with seizure onset and surgical outcome”, Epilepsia, 63:8 (2022), 1942–1955 | DOI

[10] W. Loscher, H. Potschka, S. M. Sisodiya, A. Vezzani, “Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options”, Pharmacological Reviews, 72:3 (2020), 606–638 | DOI

[11] D. Depannemaecker, A. Ivanov, D. Lillo, L. Spek, C. Bernard, V. K. Jirsa, “A unified physiological framework of transitions between seizures, sustained ictal activity and depolarization block at the single neuron level”, Journal of Computational Neuroscience, 50:1 (2022), 33–49 | DOI | Zbl

[12] A. V. Chizhov, A. V. Zefirov, D. V. Amakhin, E. Yu. Smirnova, A. V. Zaitsev, “Minimal model of interictal and ictal discharges “Epileptor-2””, Computational Biology, 14:5 (2018) | DOI

[13] E. Kutumova, I. Kiselev, R. Sharipov, G. Lifshits, F. Kolpakov, “Thoroughly Calibrated Modular Agent-Based Model of the Human Cardiovascular and Renal Systems for Blood Pressure Regulation in Health and Disease”, Frontiers in Physiology, 12 (2021) | DOI

[14] I. R. Akberdin, I. N. Kiselev, S. S. Pintus, R. N. Sharipov, A. Y. Vertyshev, O. L. Popov D. V. Vinogradova, F. A. Kolpakov, “A Modular Mathematical Model of Exercise-Induced Changes in Metabolism, Signaling, and Gene Expression in Human Skeletal Muscle”, International Journal of Molecular Sciences, 22:19 (2021), 10353 | DOI

[15] V. N. Afonyushkin, I. R. Akberdin, Y. N. Kozlova, I. A. Schukin, T. E. Mironova, A. S. Bobikova, V. S. Cherepushkina, N. A. Donchenko, Y. E. Poletaeva, F. A. Kolpakov, “Multicompartmental Mathematical Model of SARS-CoV-2 Distribution in Human Organs and Their Treatment”, Mathematics, 10:11 (2022), 1925 | DOI

[16] E. O. Kutumova, I. N. Kiselev, R. N. Sharipov, I. N. Lavrik, F. A. Kolpakov, “A modular model of the apoptosis machinery”, Advances in Experimental Medicine and Biology, 736 (2012), 235–245 | DOI

[17] F. Kolpakov, I. Akberdin, T. Kashapov, I. Kiselev, S. Kolmykov, Y. Kondrakhin, E. Kutumova, N. Mandrik, S. Pintus, A. Ryabova, R. Sharipov, I. Yevshin, A. Kel, “BioUML: an integrated environment for systems biology and collaborative analysis of biomedical data”, Nucleic Acids Research, 47:W1 (2019), W225–W233 | DOI

[18] F. Kolpakov, I. Akberdin, I. Kiselev, S. Kolmykov, Y. Kondrakhin, M. Kulyashov, E. Kutumova, S. Pintus, A. Ryabova, R. Sharipov, I. Yevshin, S. Zhatchenko, A. Kel, “BioUML-towards a universal research platform”, Nucleic Acids Research, 50:W1 (2022), W124–W131 | DOI

[19] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, C. S. Woodward, “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers”, ACM Transactions on Mathematical Software, 31:3 (2005), 363–396 | DOI | MR | Zbl

[20] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems, Springer-Verlag, Berlin, 1996, 614 pp. | MR | Zbl

[21] J. R. Dormand, P. J. Prince, “A family of embedded Runge-Kutta formulae”, Journal of Computational and Applied Mathematics, 6:1 (1980), 19–26 | DOI | MR | Zbl

[22] N. Novere, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin, E. Demir, K. Wegner, M. I. Aladjem, S. M. Wimalaratne, F. T. Bergman, R. Gauges, Ghazal. P., H. Kawaji, L. Li, Y. Matsuoka, A. Villeger, S. E. Boyd, L. Calzone, Courtot M, U. Dogrusoz, T. C. Freeman, A. Funahashi, S. Ghosh, A. Jouraku, S. Kim, F. Kolpakov, A. Luna, S. Sahle, E. Schmidt, S. Watterson, G. Wu, I. Goryanin, D. B. Kell, C. Sander, H. Sauro, J. L. Snoep, K. Kohn, H. Kitano, “The Systems Biology Graphical Notation”, Nature Biotechnology, 27:8 (2009), 735–741 | DOI

[23] A. I. Hernandez, V. Le Rolle, A. Defontaine, G. Carrault, “A multiformalism and multiresolution modelling environment: application to the cardiovascular system and its regulation”, Philosophical Transactions of the Royal Society, 367:1908 (2009), 4923–4940 | DOI

[24] S. A. Moosavi, V. K. Jirsa, W. Truccolo, “Critical dynamics in the spread of focal epileptic seizures: Network connectivity, neural excitability and phase transitions”, PLOS ONE, 17:8 (2022), 1908 | DOI

[25] R. S. Desikan, F. Segonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L. Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman, M. S. Albert, R. J. Killiany, “An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest”, NeuroImage, 31:3 (2006), 968–980 | DOI

[26] V. K. Jirsa, W. C. Stacey, P. P. Quilichini, A. I. Ivanov, C. Bernard, “On the nature of seizure dynamics”, Brain, 137:8 (2014), 2210–2230 | DOI

[27] V. K. Jirsa, T. Proix, D. Perdikis, M. M. Woodman, H. Wang, J. Gonzalez-Martinez, C. Bernard, C. Benar, M. Guye, P. Chauvel, F. Bartolomei, “The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread”, NeuroImage, 145 (2017), 377–388 | DOI

[28] Y. Wei, G. Ullah, J. Ingram, S. J. Schiff, “Oxygen and seizure dynamics: II. Computational modeling”, Journal of Neurophysiology, 112:2 (2014), 213–223 | DOI

[29] E. M. Izhikevich, Which model to use for cortical spiking neurons?, IEEE Transactions on Neural Networks, 15:5 (2004), 1063–1070 | DOI

[30] E. Y. Smirnova, A. V. Chizhov, A. V. Zaitsev, “Presynaptic GABAB receptors underlie the antiepileptic effect of low-frequency electrical stimulation in the 4-aminopyridine model of epilepsy in brain slices of young rats”, Brain Stimulation, 13:5 (2020), 1387–1395 | DOI | MR

[31] G. Kapus, J. I. Szekely, J. Durand, A. Ruiz, I. Tarnawa, “AMPA receptor antagonists, GYKI 52466 and NBQX, do not block the induction of long-term potentiation at therapeutically relevant concentrations”, Brain Research Bulletin, 52:6 (2000), 511–517 | DOI

[32] J. Parada, S. J. Czuczwar, W. A. Turski, “NBQX does not affect learning and memory tasks in mice: a comparison with D-CPPene and ifenprodil”, Cognitive Brain Research, 1:1 (1992), 67–71 | DOI

[33] N. Pitsikas, A. E. Rigamonti, S. G. Cella, E. E. Muller, “The non-NMDA receptor antagonist NBQX does not affect rats performance in the object recognition task”, Pharmacological Research, 45:1 (2002), 43–46 | DOI

[34] M. A. Rogawski, “AMPA receptors as a molecular target in epilepsy therapy”, Acta Neurologica Scandinavica, 127 (2013), 9–18 | DOI

[35] B. A. Earnshaw, P. C. Bressloff, “Biophysical model of AMPA receptor trafficking and its regulation during long-term potentiation/long-term depression”, Journal of Neuroscience, 26:47 (2006), 12362–12373 | DOI

[36] T. Proix, F. Bartolomei, P. Chauvel, C. Bernard, V. K. Jirsa, “Permittivity Coupling across Brain Regions Determines Seizure Recruitment in Partial Epilepsy”, Journal of Neuroscience, 34:45 (2014), 15009–15021 | DOI

[37] Izhikevich E. M., “Neural excitability, spiking and bursting”, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 10:6 (2000), 1171–1266 | DOI | MR | Zbl

[38] V. K. Jirsa, W. C. Stacey, P. P. Quilichini, A. I. Ivanov, C. Bernard, “On the nature of seizure dynamics”, Brain, 137:8 (2014), 2210–2230 | DOI

[39] M. L. Saggio, A. Spiegler, C. Bernard, V. K. Jirsa, “Fast-Slow Bursters in the Unfolding of a High Codimension Singularity and the Ultra-slow Transitions of Classes”, Journal of Mathematical Neuroscience, 7:1 (2017) | DOI | MR | Zbl

[40] A. Blenkinsop, A. Valentin, M. P. Richardson, J. R. Terry, “The dynamic evolution of focal-onset epilepsies-combining theoretical and clinical observations”, European Journal of Neuroscience, 36:2 (2012), 2188–2200 | DOI

[41] M. de Curtis, L. Uva, V. Gnatkovsky, Potassium dynamics and seizures: Why is potassium ictogenic?, Epilepsy Research, 143 (2018), 50–59 | DOI

[42] P. Kofuji, E. A. Newman, “Potassium buffering in the central nervous system”, Neuroscience, 129:4 (2004), 1043–1054 | DOI

[43] S. F. Traynelis, R. Dingledine, “Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice”, Journal of Neurophysiology, 59:1 (1988), 259–276 | DOI

[44] M. Avoli, M. D'Antuono, J. Louvel, R. Kohling, G. Biagini, R. Pumain, G. D'Arcangelo, V. Tancredi, “Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro”, Progress in Neurobiology, 68:3 (2002), 167–207 | DOI

[45] L. Librizzi, G. Losi, I. Marcon, M. Sessolo, P. Scalmani, G. Carmignoto, M. de Curtis, “Interneuronal Network Activity at the Onset of Seizure-Like Events in Entorhinal Cortex Slices”, Journal of Neuroscience, 37:43 (2017), 10398–10407 | DOI

[46] L. L. Antonio, M. L. Anderson, E. A. Angamo, S. Gabriel, Z. J. Klaft, A. Liotta, S. Salar, N. Sandow, U. Heinemann, “In vitro seizure like events and changes in ionic concentration”, Journal of Neuroscience Methods, 260 (2016), 33–44 | DOI

[47] J. V. Raimondo, R. J. Burman, A. A. Katz, C. J. Akerman, “Ion dynamics during seizures”, Frontiers in Cellular Neuroscience, 9 (2015) | DOI | Zbl

[48] T. Hanada, “Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors”, Biomolecules, 10:3 (2020), 464–485 | DOI

[49] Z. Nusser, R. Lujan, G. Laube, J. Roberts, D. B. Molnar, P. Somogyi, “Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus”, Neuron, 21:3 (1998), 545–559 | DOI

[50] J. R. Cottrell, G. R. Dube, C. Egles, G. Liu, “Distribution, Density, and Clustering of Functional Glutamate Receptors Before and After Synaptogenesis in Hippocampal Neurons”, Journal of Neurophysiology, 84:3 (2000), 1573–1587 | DOI

[51] J. Tanaka, M. Matsuzaki, E. Tarusawa, A. Momiyama, E. Molnar, H. Kasai, R. Shigemoto, “Number and Density of AMPA Receptors in Single Synapses in Immature Cerebellum”, Journal of Neuroscie, 25:4 (2005), 799–807 | DOI

[52] C. C. Petersen, R. C. Malenka, R. A. Nicoll, J. J. Hopfield, “All-or-none potentiation at CA3-CA1 synapses”, Proceedings of the National Academy of Sciences, 95:8 (1998), 4732–4737 | DOI

[53] D. H. O'Connor, G. M. Wittenberg, S. S. H. Wang, “Graded bidirectional synaptic plasticity is composed of switch-like unitary events”, Proceedings of the National Academy of Sciences, 102:27 (2005), 9679–9687 | DOI

[54] T. V. Bliss, T. Lomo, “Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path”, Journal of Physiology, 232:2 (1973), 331–356 | DOI

[55] E. Hanse, B. Gustafsson, “Postsynaptic, but not presynaptic, activity controls the early time course of long-term potentiation in the dentate gyrus”, Journal of Neuroscience, 12:8 (1992), 3226–3240 | DOI

[56] S. M. Dudek, M. F. Bear, “Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade”, Proceedings of the National Academy of Sciences, 89:10 (1992), 4363–4367 | DOI