Mathematical analysis of aortic deformation in aneurysm and wall dissection
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 464-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

Aortic dissection is an extremely severe pathology. From the mechanics point of view, the aorta is a multilayered anisotropic reinforced shell, which is subjected to periodic loading under the action of pulse blood pressure. The questions of mathematical modeling of aorta and large arteries dissection are considered. A review of modern mathematical models of aortic and arterial wall structure obtained on the basis of experimental data processing on biaxial stretching of samples is carried out. Mathematical models can be conditionally divided into two classes: 1) effective models, when the internal structure of the wall structure is ignored, but the mechanical parameters of the material “averaged” over the wall thickness are introduced; 2) structured models, when the multilayer (up to three layers) structure of the artery is taken into account with the addition of one to four families of reinforcing fibers. One of the most widely used artery models, the Holzapfel–Hasser–Ogden model, is considered in detail. This model describes a two or three-layered artery with two families of reinforcing fibers. For this model tables of design parameters are given, numerical calculations of arterial rupture and dissection are carried out. The blood vessel is subjected to pulse pressure of blood flowing through it. It is shown that rupture of the inner layer of the vessel leads to an increase in the stress on the outer wall of the vessel. Increasing the thickness and length of the rupture increases the stresses on the outer wall of the vessel. The presence of an aneurysm of the vessel increases stresses twice as much as a vessel without an aneurysm. Splitting of the inner wall of the vessel leads to an increase in stresses on the wall – stresses fall with increasing rupture width for a straight vessel and rise for a vessel with an aneurysm. Stress calculations at the “tip” of delamination showed that the maximum stress is reached at the outer wall of the rupture.
@article{MBB_2023_18_2_a13,
     author = {A. E. Medvedev and A. D. Erokhin},
     title = {Mathematical analysis of aortic deformation in aneurysm and wall dissection},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {464--478},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a13/}
}
TY  - JOUR
AU  - A. E. Medvedev
AU  - A. D. Erokhin
TI  - Mathematical analysis of aortic deformation in aneurysm and wall dissection
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 464
EP  - 478
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a13/
LA  - ru
ID  - MBB_2023_18_2_a13
ER  - 
%0 Journal Article
%A A. E. Medvedev
%A A. D. Erokhin
%T Mathematical analysis of aortic deformation in aneurysm and wall dissection
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 464-478
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a13/
%G ru
%F MBB_2023_18_2_a13
A. E. Medvedev; A. D. Erokhin. Mathematical analysis of aortic deformation in aneurysm and wall dissection. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 464-478. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a13/

[1] Dzh. Melissano, Rassloenie aorty: lichnye istorii patsientov i dostizheniya meditsiny, spasshie im zhizn, Logosfera, M., 2020, 464 pp.

[2] E. T. Razumova, V. A. Lyusov, V. A. Kokorin, “Rassloenie aorty”, Rossiiskii kardiologicheskii zhurnal, 31:5 (2001), 88–94

[3] R. Zorrilla, E. Soudah, R. Rossi, “Computational modeling of the fluid flow in type B aortic dissection using a modified finite element embedded formulation”, Biomechanics and Modeling in Mechanobiology, 19 (2020), 1565–1583 | DOI | MR

[4] A. E. Medvedev, “Postroenie slozhnykh trekhmernykh struktur aorty konkretnogo patsienta s pomoschyu konechnykh analiticheskikh formul”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 312–324 | DOI | MR

[5] G. Mistelbauer, C. Rossl, K. Baumler, B. Preim, D. Fleischmann, “Implicit modeling of patient-specific aortic dissections with elliptic Fourier descriptors”, Computer Graphics Forum, 40 (2021), 423–434 | DOI

[6] V. Jadaun, R. S. Nitin, “An application of soliton solutions of a differential equation in the progression of aortic dissection”, Mathematical Methods in the Applied Sciences, 2023 | DOI | MR

[7] L. Emerel, J. Thunes, T. Kickliter, M. Billaud, J. A. Phillippi, D. A. Vorp, S. Maiti, T. G. Gleason, “Predissection-derived geometric and distensibility indices reveal increased peak longitudinal stress and stiffness in patients sustaining acute type A aortic dissection: Implications for predicting dissection”, The Journal of Thoracic and Cardiovascular Surgery, 158:2 (2018), 355–363 | DOI

[8] A. I. Lipovka, A. A. Karpenko, A. P. Chupakhin, D. V. Parshin, “Issledovanie prochnostnykh svoistv sosudov abdominalnogo otdela aorty: rezultaty eksperimentov i perspektivy”, Prikladnaya mekhanika i tekhnicheskaya fizika, 63:2 (2022), 84–93 | DOI

[9] T. E. Carew, R. N. Vaishnav, D. J. Patel, “Compressibility of the arterial wall”, Circulation Research, 23:1 (1968), 61–68 | DOI

[10] P. Skacel, J. Bursa, “Compressibility of arterial wall Direct measurement and predictions of compressible constitutive models”, Journal of the Mechanical Behavior of Biomedical Materials, 90 (2019), 538–546 | DOI

[11] L. H. Peterson, R. E. Jensen, J. Parnell, “Mechanical properties of arteries in vivo”, Circulation Research, 8:3 (1960), 622–639 | DOI

[12] P. Skacel, J. Bursa, “Poisson's ratio and compressibility of arterial wall Improved experimental data reject auxetic behaviour”, Journal of the Mechanical Behavior of Biomedical Materials, 131 (2022), 105229 | DOI

[13] M. A. Meyers, K. K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, 2008, 856 pp.

[14] C. Chuong, Y. Fung, “Three-dimensional stress distribution in arteries”, Journal of Biomechanical Engineering, 105:3 (1983), 268–274 | DOI

[15] S. N. Bagaev, V. N. Zakharov, A. L. Markel, A. E. Medvedev, V. A. Orlov, V. I. Samsonov, V. M. Fomin, “Ob optimalnom stroenii stenki krovenosnykh sosudov”, Doklady Akademii nauk, 398:3 (2004), 331–334

[16] A. E. Medvedev, V. I. Samsonov, V. M. Fomin, “O ratsionalnoi strukture krovenosnykh sosudov”, Prikladnaya mekhanika i tekhnicheskaya fizika, 47:3 (2006), 24–30 | Zbl

[17] S. Baek, R. L. Gleason, K. R. Rajagopal, J. D. Humphrey, “Theory of small on large: potential utility in computations of fluid-solid interactions in arteries”, Computer Methods in Applied Mechanics and Engineering, 196:31-32 (2007), 3070–3078 | DOI | MR | Zbl

[18] J. Ferruzzi, D. A. Vorp, J. D. Humphrey, “On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms”, Journal of the Royal Society Interface, 8:56 (2011), 435–450 | DOI

[19] M. Amabili, K. Karazis, R. Mongrain, M. P. Paidoussis, R. Cartier, “A three-layer model for buckling of a human aortic segment under specific flow-pressure conditions”, International Journal for Numerical Methods in Biomedical Engineering, 28:5 (2012), 495–512 | DOI | MR | Zbl

[20] G. A. Holzapfel, T. C. Gasser, R. W. Ogden, “A new constitutive framework for arterial wall mechanics and a comparative study of material models”, Journal of Elasticity and the Physical Science of Solids, 61:1 (2000), 1–48 | DOI | MR | Zbl

[21] G. A. Holzapfel, T. C. Gasser, M. Stadler, “A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis”, European Journal of Mechanics, A/Solids, 21:3 (2002), 441–463 | DOI | MR | Zbl

[22] G. A. Holzapfel, G. Sommer, C. T. Gasser, P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling”, American Journal of Physiology-Heart and Circulatory Physiology, 289:5 (2005), H2048–H2058 | DOI

[23] T. C. Gasser, R. W. Ogden, G. A. Holzapfel, “Hyperelastic modelling of arterial layers with distributed collagen fibre orientations”, Journal of the Royal Society Interface, 3:6 (2006), 15–35 | DOI

[24] F. Nemavkhola, T. Pandelani, G. Ngvangva, “Primenenie giperuprugikh modelei dlya opisaniya povedeniya raznykh oblastei ovechego serdtsa na osnove dvukhosnykh mekhanicheskikh ispytanii”, Rossiiskii zhurnal biomekhaniki, 2022, no. 2, 19–30 | DOI

[25] A. Giudici, A. W. Khir, J. M. Szafron, B. Spronck, “From uniaxial testing of isolated layers to a tri-layered arterial wall: A novel constitutive modelling framework”, Annals of Biomedical Engineering, 49:9 (2021), 2454–2467 | DOI

[26] V. A. Kozlov, S. A. Nazarov, “Asymptotic models of anisotropic heterogeneous elastic walls of blood vessels”, Journal of Mathematical Sciences, 213:4 (2016), 561–581 | DOI | MR | Zbl

[27] C. J. Chuong, Y. C. Fung, “Three-dimensional stress distribution in arteries”, Journal of Biomechanical Engineering, 105:3 (1983), 268–274 | DOI

[28] H. S. Choi, R. Vito, “Two-dimensional stress-strain relationship for canine pericardium”, Journal of Biomechanical Engineering, 112:2 (1990), 153–159 | DOI

[29] H. Ngwangwa, T. Msibi M. Pandelani, I. Mabuda, L. Semakane, F. Nemavhola, “Biomechanical analysis of sheep oesophagus subjected to biaxial testing including hyperelastic constitutive model fitting”, Heliyon, 8:5 (2012), 1–10 | DOI

[30] D. Roy, C. Kauffmann, S. Delorme, S. Lerouge, G. Cloutier, G. Soulez, “A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts”, Computational and Mathematical Methods in Medicine, 2012:820389 (2012), 1–16 | DOI | MR

[31] M. L. Raghavan, M. W. Webster, D. A. Vorp, “Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model”, Annals of Biomedical Engineering, 24:5 (1996), 573–582 | DOI

[32] K. K. Skripachenko, A. A. Golyadkina, K. M. Morozov, N. O. Chelnokova, N. V. Ostrovskii, I. V. Kirillova, L. Yu. Kossovich, “Biomekhanicheskii patsiento orientirovannyi analiz vliyaniya anevrizmy na gemodinamiku grudnogo otdela aorty”, Rossiiskii zhurnal biomekhaniki, 23:4 (2019), 526–536 | DOI

[33] Y. Shi, M. Zhu, Y. Chang, H. Qiao, Y. Liu, “The risk of stanford type-A aortic dissection with different tear size and location: a numerical study”, BioMedical Engineering OnLine, 15:128 (2016), 531–544 | DOI

[34] Z. Y. Li, J. U-King-Im, T. Y. Tang, E. Soh, T. C. See, J. H. Gillard, “Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm”, Journal of Vascular Surgery, 47:5 (2008), 928–935 | DOI

[35] J. Kumara, A. Faye, “Prediction of failure envelope of calcified aneurysmatic tissue”, Procedia Structural Integrity, 42 (2022), 806–812 | DOI | MR

[36] L. Wang, S. M. Roper, N. A. Hill, X. Luo, “Propagation of dissection in a residually stressed artery model”, Biomechanics and Modeling in Mechanobiology, 16 (2017), 139–149 | DOI