Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a11, author = {V. A. Fedorov and I. A. Volkhin and S. S. Khruschev and T. K. Antal and I. B. Kovalenko}, title = {Role of charged amino acid residues of plastocyanin in interaction with cytochrome b$_6$f complex and photosystem i of higher plants: a study using the {Brownian} dynamics method}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {434--445}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a11/} }
TY - JOUR AU - V. A. Fedorov AU - I. A. Volkhin AU - S. S. Khruschev AU - T. K. Antal AU - I. B. Kovalenko TI - Role of charged amino acid residues of plastocyanin in interaction with cytochrome b$_6$f complex and photosystem i of higher plants: a study using the Brownian dynamics method JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 434 EP - 445 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a11/ LA - ru ID - MBB_2023_18_2_a11 ER -
%0 Journal Article %A V. A. Fedorov %A I. A. Volkhin %A S. S. Khruschev %A T. K. Antal %A I. B. Kovalenko %T Role of charged amino acid residues of plastocyanin in interaction with cytochrome b$_6$f complex and photosystem i of higher plants: a study using the Brownian dynamics method %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 434-445 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a11/ %G ru %F MBB_2023_18_2_a11
V. A. Fedorov; I. A. Volkhin; S. S. Khruschev; T. K. Antal; I. B. Kovalenko. Role of charged amino acid residues of plastocyanin in interaction with cytochrome b$_6$f complex and photosystem i of higher plants: a study using the Brownian dynamics method. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 434-445. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a11/
[1] M. Watanabe, D. A. Semchonok, M. T. Webber-Birungi, S. Ehira, K. Kondo, R. Narikawa, M. Ohmori, E. J. Boekema, M. Ikeuchi, “Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobac-teria”, Proceedings of the National Academy of Sciences, 111:7 (2014), 2512–2517 | DOI
[2] D. J. Simpson, J. Knoetzel, “Light-harvesting Complexes of Plants and Algae: Introduction, Survey and Nomenclature”, Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis and Respiration, 4 (1996) | DOI
[3] A. Naschberger, L. Mosebach, V. Tobiasson, S. Kuhlgert, M. Scholz, A. Perez Boerema, T. T.H. Ho, A. Vidal-Meireles, Y. Takahashi, M. Hippler, A. Amunts, “Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex”, Nat. Plants, 8:10 (2022), 1191–1201 | DOI
[4] R. Hohner, M. Pribil, M. Herbstova, L. S. Lopez, H. H. Kunz, M. Li, M. Wood, V. Svoboda, S. Puthiyaveetil, D. Leister, H. Kirchhoff, “Plastocyanin is the long-range electron carrier between photo-system II and photosystem I in plants”, Proceedings of the National Academy of Sciences, 117:26 (2020), 15354–15362 | DOI
[5] I. Caspy, A. Borovikova-Sheinker, D. Klaiman, Y. Shkolnisky, N. Nelson, “The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin”, Nat. Plants, 6 (2020), 1300–1305 | DOI
[6] I. Caspy, M. Fadeeva, S. Kuhlgert, A. Borovikova-Sheinker, D. Klaiman, G. Masrati, F. Drepper, N. Ben-Tal, M. Hippler, N. Nelson, “Structure of plant photosystem I plastocyanin complex reveals strong hydrophobic interactions”, Biochem J., 478:12 (2021), 2371–2384 | DOI
[7] M. Hippler, J. Reichert, M. Sutter, E. Zak, L. Altschmied, U. Schroer, R. G. Herrmann, W. Haehnel, “The plastocyanin binding domain of photosystem I”, EMBO J., 15:23 (1996), 6374–84 | DOI
[8] M. Hippler, F. Drepper, W. Haehnel, “The oxidizing site of photosystem I modulates the electron transfer from plastocyanin to P700+”, Photosyntthesis: from Light to Biosphere, 2 (1995), 99–102
[9] F. Drepper, M. Hippler, W. Nitschke, W. Haehnel, “Binding dynamics and electron transfer between plastocyanin and photosystem I”, Biochemistry, 35 (1996), 1282–1295 | DOI
[10] V. A. Fedorov, I. B. Kovalenko, S. S. Khruschev, D. M. Ustinin, T. K. Antal, G. Yu. Riznichenko, A. B. Rubin, “Comparative analysis of plastocyanin-cytochrome f complex for-mation in higher plants, green algae and cyanobacteria”, Physiologia Plantarum, 166 (2019), 320–335 | DOI
[11] S. S. Khruschev, A. M. Abaturova, A. N. Dyakonova, D. M. Ustinin, D. V. Zlenko, V. A. Fedorov, I. B. Kovalenko, G. Yu. Riznichenko, A. B. Rubin, “Modelirovanie belok-belkovykh vzaimodeistvii s primeneniem programmnogo kompleksa mnogochastichnoi brounovskoi dinamiki ProKSim”, Kompyuternye issledovaniya i modelirovanie, 5:1 (2013), 47–64 | MR
[12] Y. Mazor, A. Borovikova, I. Nelson N. Caspy, “Structure of the plant photosystem I supercomplex at 2.6Å resolution”, Nature Plants, 3 (2017), 17014 | DOI
[13] B. Webb, A. Sali, “Comparative protein structure modeling using MODELLER”, Current Protocols in Bioinformatics, 54:1 (2016) | DOI | MR
[14] L. L.C. Schrodinger, W. DeLano, The PyMOL Molecular Graphics System, Version 2.5 (accessed 20.11.2023) https://pymol.org
[15] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. Groot, H. Grubmuller, A. D. MacKerell Jr., “CHARMM36m: an improved force field for folded and intrinsically disordered proteins”, Nature Methods, 14:1 (2017), 71–73 | DOI
[16] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. Jr. Mackerell, “CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields”, Journal of Computational Chemistry, 31:4 (2010), 671–690 | DOI
[17] S. Adam, M. Knapp-Mohammady, J. Yi, A. N. Bondar, “Revised CHARMM force field parameters for iron-containing cofactors of photosystem II”, Journal of Computational Chemistry, 39:1 (2018), 7–20 | DOI
[18] J. Huang, A. D. MacKerell Jr, “CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data”, Journal of Computational Chemistry, 34:25 (2013), 2135–2145 | DOI
[19] K. Vanommeslaeghe, A. D. MacKerell Jr, “Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing”, Journal of Chemical Information and Modeling, 52:12 (2012), 3144–3154 | DOI
[20] K. Vanommeslaeghe, E. P. Raman, A. D. MacKerell Jr, “Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges”, Journal of Chemical Information and Modeling, 52:12 (2012), 3155–3168 | DOI
[21] W. Grudzinski, L. Nierzwicki, R. Welc, E. Reszczynska, R. Luchowski, J. Czub, W. I. Gruszecki, “Localization and orientation of xanthophylls in a lipid bilayer”, Scientific Reports, 7:1 (2017), 1–10 | DOI
[22] M. H. Teixeira, G. M. Arantes, “Effects of lipid composition on membrane distribution and permeability of natural quinones”, RSC Advances, 9:29 (2019), 16892–16899 | DOI
[23] S. Jo, T. Kim, V. G. Iyer, W. Im, “CHARMM-GUI: a web-based graphical user interface for CHARMM”, Journal of Computational Chemistry, 29:11 (2008), 1859–1865 | DOI
[24] J. Lee, D. S. Patel, J. Stahle, S. J. Park, N. R. Kern, S. Kim, J. Lee, X. Cheng, M. A. Valvano, O. Holst, Y. A. Knirel, Y. Qi, S. Jo, J. B. Klauda, G. Widmalm, W. Im, “CHARMM-GUI membrane builder for complex biological membrane simulations with glycolipids and lipoglycans”, Journal of Chemical Theory and Computation, 15:1 (2018), 775–786 | DOI
[25] C. H. Chang, K. Kim, “Density functional theory calculation of bonding and charge parameters for molecular dynamics studies on [FeFe] hydrogenases”, Journal of Chemical Theory and Computation, 5:4 (2009), 1137–1145 | DOI
[26] M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers”, SoftwareX, 1 (2015), 19–25 | DOI
[27] E. L. Gross, Jr. D.C. Pearson, D. C. Pearson, “Brownian dynamics simulations of the interaction of Chlamydomonas cytochrome f with plastocyanin and cytochrome c6”, Biophys. J., 85:3 (2003), 2055–2068 | DOI
[28] P. Langevin, “On the theory of Brownian motion”, C. R. Acad. Sci., 146 (1908), 530–533
[29] F. Fogolari, A. Brigo, H. Molinari, “The Poisson-Boltzmann Equation for Biomolecular Electrostatics: A Tool for Structural Biology”, J. Mol. Recognit, 15 (2002), 377–392 | DOI
[30] M. Ankerst, M. M. Breunig, H. P. Kriegel, J. Sander, “OPTICS: Ordering Points to Identify the Clustering Structure”, Proc. ACM SIGMOD, 1999, 49–60 | DOI
[31] A. Elke, C. Bohm, P. Kroger, “DeLiClu: boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking”, Proc. 10th Pacific Asian Conf. Adv. Knowl. Discov. Data Min., 2006, 119–128
[32] J. Sander, X. Qin, Z. Lu, N. Niu, A. Kovarsky, “Automatic extraction of clusters from hierarchical clustering representations”, Proc. 7th Pacific-Asia Conf. Knowl. Discov. DataMining, 2003, 75–87 | Zbl
[33] V. A. Fedorov, S. S. Khruschev, I. B. Kovalenko, “Analiz traektorii brounovskoi i molekulyarnoi dinamiki dlya vyyavleniya mekhanizmov belok-belkovykh vzaimodeistvii”, Kompyuternye issledovaniya i modelirovanie, 15:3 (2023), 723–738 | DOI
[34] S. Young, K. Sigfridsson, K. Olesen, O. Hansson, “The involvement of the two acidic patches of spinach plastocyanin in the reaction with photosystem I”, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1322:2-3 (1997), 106–114 | DOI