Role of charged amino acid residues of plastocyanin in interaction with cytochrome b$_6$f complex and photosystem i of higher plants: a study using the Brownian dynamics method
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 434-445.

Voir la notice de l'article provenant de la source Math-Net.Ru

Plastocyanin is an electron carrier protein in the electron transport chain of chloroplasts, carrying out the transfer of an electron from cytochrome f of the cytochrome b6f complex to photosystem I. Using the method of Brownian dynamics, the process of formation of the encounter complex of plastocyanin and photosystem I of higher plants was studied. The electrostatic properties of proteins were studied, and the most important amino acid residues for their interaction were identified. It was shown that plastocyanin contacts the positively charged alpha-helix protruding into the lumen of the F subunit of photosystem I with amino acid residues of both its “large” (D42, E43, D44, E45, D51) and “small” (E59, E60, D61) the negatively charged regions in 73% of cases, and only the "large" region in 27% of cases. A comparison of the study results with previously obtained data on the interaction of plastocyanin with cytochrome f made it possible to identify the role of charged amino acid residues of plastocyanin in the process of complex formation with photosystem I and cytochrome f. When interacting with cytochrome f, a positively charged region located near the small domain of cytochrome f and formed by amino acid residues K58, K65, K66, K187 and R209, attracts negatively charged amino acid residues D42, E43, D44, E45, D51 of the “large” region of plastocyanin, forming an electrostatic hinge contact around which rotation occurs when the final complex is formed. The “small” region of plastocyanin is involved in the stabilization of the final complex. Thus, both in the formation of the encounter complex with photosystem I, and in the reaction with cytochrome f the same negatively charged amino acid residues of plastocyanin are used.
@article{MBB_2023_18_2_a11,
     author = {V. A. Fedorov and I. A. Volkhin and S. S. Khruschev and T. K. Antal and I. B. Kovalenko},
     title = {Role of charged amino acid residues of plastocyanin in interaction with cytochrome b$_6$f complex and photosystem i of higher plants: a study using the {Brownian} dynamics method},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {434--445},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a11/}
}
TY  - JOUR
AU  - V. A. Fedorov
AU  - I. A. Volkhin
AU  - S. S. Khruschev
AU  - T. K. Antal
AU  - I. B. Kovalenko
TI  - Role of charged amino acid residues of plastocyanin in interaction with cytochrome b$_6$f complex and photosystem i of higher plants: a study using the Brownian dynamics method
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 434
EP  - 445
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a11/
LA  - ru
ID  - MBB_2023_18_2_a11
ER  - 
%0 Journal Article
%A V. A. Fedorov
%A I. A. Volkhin
%A S. S. Khruschev
%A T. K. Antal
%A I. B. Kovalenko
%T Role of charged amino acid residues of plastocyanin in interaction with cytochrome b$_6$f complex and photosystem i of higher plants: a study using the Brownian dynamics method
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 434-445
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a11/
%G ru
%F MBB_2023_18_2_a11
V. A. Fedorov; I. A. Volkhin; S. S. Khruschev; T. K. Antal; I. B. Kovalenko. Role of charged amino acid residues of plastocyanin in interaction with cytochrome b$_6$f complex and photosystem i of higher plants: a study using the Brownian dynamics method. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 434-445. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a11/

[1] M. Watanabe, D. A. Semchonok, M. T. Webber-Birungi, S. Ehira, K. Kondo, R. Narikawa, M. Ohmori, E. J. Boekema, M. Ikeuchi, “Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobac-teria”, Proceedings of the National Academy of Sciences, 111:7 (2014), 2512–2517 | DOI

[2] D. J. Simpson, J. Knoetzel, “Light-harvesting Complexes of Plants and Algae: Introduction, Survey and Nomenclature”, Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis and Respiration, 4 (1996) | DOI

[3] A. Naschberger, L. Mosebach, V. Tobiasson, S. Kuhlgert, M. Scholz, A. Perez Boerema, T. T.H. Ho, A. Vidal-Meireles, Y. Takahashi, M. Hippler, A. Amunts, “Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex”, Nat. Plants, 8:10 (2022), 1191–1201 | DOI

[4] R. Hohner, M. Pribil, M. Herbstova, L. S. Lopez, H. H. Kunz, M. Li, M. Wood, V. Svoboda, S. Puthiyaveetil, D. Leister, H. Kirchhoff, “Plastocyanin is the long-range electron carrier between photo-system II and photosystem I in plants”, Proceedings of the National Academy of Sciences, 117:26 (2020), 15354–15362 | DOI

[5] I. Caspy, A. Borovikova-Sheinker, D. Klaiman, Y. Shkolnisky, N. Nelson, “The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin”, Nat. Plants, 6 (2020), 1300–1305 | DOI

[6] I. Caspy, M. Fadeeva, S. Kuhlgert, A. Borovikova-Sheinker, D. Klaiman, G. Masrati, F. Drepper, N. Ben-Tal, M. Hippler, N. Nelson, “Structure of plant photosystem I plastocyanin complex reveals strong hydrophobic interactions”, Biochem J., 478:12 (2021), 2371–2384 | DOI

[7] M. Hippler, J. Reichert, M. Sutter, E. Zak, L. Altschmied, U. Schroer, R. G. Herrmann, W. Haehnel, “The plastocyanin binding domain of photosystem I”, EMBO J., 15:23 (1996), 6374–84 | DOI

[8] M. Hippler, F. Drepper, W. Haehnel, “The oxidizing site of photosystem I modulates the electron transfer from plastocyanin to P700+”, Photosyntthesis: from Light to Biosphere, 2 (1995), 99–102

[9] F. Drepper, M. Hippler, W. Nitschke, W. Haehnel, “Binding dynamics and electron transfer between plastocyanin and photosystem I”, Biochemistry, 35 (1996), 1282–1295 | DOI

[10] V. A. Fedorov, I. B. Kovalenko, S. S. Khruschev, D. M. Ustinin, T. K. Antal, G. Yu. Riznichenko, A. B. Rubin, “Comparative analysis of plastocyanin-cytochrome f complex for-mation in higher plants, green algae and cyanobacteria”, Physiologia Plantarum, 166 (2019), 320–335 | DOI

[11] S. S. Khruschev, A. M. Abaturova, A. N. Dyakonova, D. M. Ustinin, D. V. Zlenko, V. A. Fedorov, I. B. Kovalenko, G. Yu. Riznichenko, A. B. Rubin, “Modelirovanie belok-belkovykh vzaimodeistvii s primeneniem programmnogo kompleksa mnogochastichnoi brounovskoi dinamiki ProKSim”, Kompyuternye issledovaniya i modelirovanie, 5:1 (2013), 47–64 | MR

[12] Y. Mazor, A. Borovikova, I. Nelson N. Caspy, “Structure of the plant photosystem I supercomplex at 2.6Å resolution”, Nature Plants, 3 (2017), 17014 | DOI

[13] B. Webb, A. Sali, “Comparative protein structure modeling using MODELLER”, Current Protocols in Bioinformatics, 54:1 (2016) | DOI | MR

[14] L. L.C. Schrodinger, W. DeLano, The PyMOL Molecular Graphics System, Version 2.5 (accessed 20.11.2023) https://pymol.org

[15] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. Groot, H. Grubmuller, A. D. MacKerell Jr., “CHARMM36m: an improved force field for folded and intrinsically disordered proteins”, Nature Methods, 14:1 (2017), 71–73 | DOI

[16] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. Jr. Mackerell, “CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields”, Journal of Computational Chemistry, 31:4 (2010), 671–690 | DOI

[17] S. Adam, M. Knapp-Mohammady, J. Yi, A. N. Bondar, “Revised CHARMM force field parameters for iron-containing cofactors of photosystem II”, Journal of Computational Chemistry, 39:1 (2018), 7–20 | DOI

[18] J. Huang, A. D. MacKerell Jr, “CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data”, Journal of Computational Chemistry, 34:25 (2013), 2135–2145 | DOI

[19] K. Vanommeslaeghe, A. D. MacKerell Jr, “Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing”, Journal of Chemical Information and Modeling, 52:12 (2012), 3144–3154 | DOI

[20] K. Vanommeslaeghe, E. P. Raman, A. D. MacKerell Jr, “Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges”, Journal of Chemical Information and Modeling, 52:12 (2012), 3155–3168 | DOI

[21] W. Grudzinski, L. Nierzwicki, R. Welc, E. Reszczynska, R. Luchowski, J. Czub, W. I. Gruszecki, “Localization and orientation of xanthophylls in a lipid bilayer”, Scientific Reports, 7:1 (2017), 1–10 | DOI

[22] M. H. Teixeira, G. M. Arantes, “Effects of lipid composition on membrane distribution and permeability of natural quinones”, RSC Advances, 9:29 (2019), 16892–16899 | DOI

[23] S. Jo, T. Kim, V. G. Iyer, W. Im, “CHARMM-GUI: a web-based graphical user interface for CHARMM”, Journal of Computational Chemistry, 29:11 (2008), 1859–1865 | DOI

[24] J. Lee, D. S. Patel, J. Stahle, S. J. Park, N. R. Kern, S. Kim, J. Lee, X. Cheng, M. A. Valvano, O. Holst, Y. A. Knirel, Y. Qi, S. Jo, J. B. Klauda, G. Widmalm, W. Im, “CHARMM-GUI membrane builder for complex biological membrane simulations with glycolipids and lipoglycans”, Journal of Chemical Theory and Computation, 15:1 (2018), 775–786 | DOI

[25] C. H. Chang, K. Kim, “Density functional theory calculation of bonding and charge parameters for molecular dynamics studies on [FeFe] hydrogenases”, Journal of Chemical Theory and Computation, 5:4 (2009), 1137–1145 | DOI

[26] M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers”, SoftwareX, 1 (2015), 19–25 | DOI

[27] E. L. Gross, Jr. D.C. Pearson, D. C. Pearson, “Brownian dynamics simulations of the interaction of Chlamydomonas cytochrome f with plastocyanin and cytochrome c6”, Biophys. J., 85:3 (2003), 2055–2068 | DOI

[28] P. Langevin, “On the theory of Brownian motion”, C. R. Acad. Sci., 146 (1908), 530–533

[29] F. Fogolari, A. Brigo, H. Molinari, “The Poisson-Boltzmann Equation for Biomolecular Electrostatics: A Tool for Structural Biology”, J. Mol. Recognit, 15 (2002), 377–392 | DOI

[30] M. Ankerst, M. M. Breunig, H. P. Kriegel, J. Sander, “OPTICS: Ordering Points to Identify the Clustering Structure”, Proc. ACM SIGMOD, 1999, 49–60 | DOI

[31] A. Elke, C. Bohm, P. Kroger, “DeLiClu: boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking”, Proc. 10th Pacific Asian Conf. Adv. Knowl. Discov. Data Min., 2006, 119–128

[32] J. Sander, X. Qin, Z. Lu, N. Niu, A. Kovarsky, “Automatic extraction of clusters from hierarchical clustering representations”, Proc. 7th Pacific-Asia Conf. Knowl. Discov. DataMining, 2003, 75–87 | Zbl

[33] V. A. Fedorov, S. S. Khruschev, I. B. Kovalenko, “Analiz traektorii brounovskoi i molekulyarnoi dinamiki dlya vyyavleniya mekhanizmov belok-belkovykh vzaimodeistvii”, Kompyuternye issledovaniya i modelirovanie, 15:3 (2023), 723–738 | DOI

[34] S. Young, K. Sigfridsson, K. Olesen, O. Hansson, “The involvement of the two acidic patches of spinach plastocyanin in the reaction with photosystem I”, Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1322:2-3 (1997), 106–114 | DOI