Numerical modelling of myocardial infarction. II.~Analysis of macrophage polarization mechanism as a therapeutic target
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 367-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study, we explore the mechanism of macrophage polarization and its significance in the development of large-scale infarction with favorable outcomes, using a minimal mathematical model of aseptic inflammation dynamics. The problem is considered in the local approximation and in the two-dimensional non-stationary formulation. The study aims to address the pertinent problem of analyzing general principles governing macrophage polarization in the context of devising therapeutic strategies and refining the “therapeutic window”. Key trends are identified to enhance the effectiveness of macrophage polarization for therapeutic purposes, along with providing approximate estimations of optimal macrophage interventions that yield organ-preserving and regenerative effects. Our findings reveal that M1/M2 macrophage polarization results from an additive interplay of at least two mechanisms – cytokine-dependent activation and reprogramming of activated macrophages. Furthermore, our modeling data demonstrate the pivotal role of macrophage reprogramming as a direct response to microenvironmental changes, facilitating favorable disease progression and its outcomes. Moreover, we establish that the process of macrophage polarization plays a crucial role in localizing focal inflammation, leading to the formation of the infarction core within finite dimensions and quasi-stationary structure at the periphery, comprising immune cell clusters. The modeling results exhibit qualitative and quantitative agreement with the experimental data. Importantly, the computational experiments results align with the majority of laboratory and clinical studies, emphasizing the therapeutic potential of macrophage polarization management as a promising treatment strategy. The paper is a follow-up of the previously published work series, devoted to the study of spatial and temporal aspects of the inflammation and death processes development in heart muscle cells.
@article{MBB_2023_18_2_a10,
     author = {O. F. Voropaeva and Ch. A. Tsgoev},
     title = {Numerical modelling of myocardial infarction. {II.~Analysis} of macrophage polarization mechanism as a therapeutic target},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {367--404},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a10/}
}
TY  - JOUR
AU  - O. F. Voropaeva
AU  - Ch. A. Tsgoev
TI  - Numerical modelling of myocardial infarction. II.~Analysis of macrophage polarization mechanism as a therapeutic target
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 367
EP  - 404
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a10/
LA  - ru
ID  - MBB_2023_18_2_a10
ER  - 
%0 Journal Article
%A O. F. Voropaeva
%A Ch. A. Tsgoev
%T Numerical modelling of myocardial infarction. II.~Analysis of macrophage polarization mechanism as a therapeutic target
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 367-404
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a10/
%G ru
%F MBB_2023_18_2_a10
O. F. Voropaeva; Ch. A. Tsgoev. Numerical modelling of myocardial infarction. II.~Analysis of macrophage polarization mechanism as a therapeutic target. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 367-404. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a10/

[1] V. A. Chereshnev, E. Yu. Gusev, “Immunologiya vospaleniya: rol tsitokinov”, Meditsinskaya immunologiya, 3:3 (2001), 361–368

[2] A. A. Yarilin, Immunologiya, GEOTAR-Media, 2010, 749 pp.

[3] C. J. Ferrante, S. J. Leibovich, “Regulation of Macrophage Polarization and Wound Healing”, Advances in wound care, 1:1 (2011), 10–16 | DOI

[4] M. Hesketh, K. B. Sahin, Z. E. West, R. Z. Murray, “Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing”, Int. J. Mol. Sci., 18 (2017), 1545 | DOI

[5] L. P. Titov, “Monotsity, makrofagi i dendritnye kletki: genez, klassifikatsiya, immunobiologicheskie svoistva”, Ves. Nats. akad. navuk Belarusi. Ser. med. navuk, 15:3 (2018), 363–382 | DOI

[6] A. A. Fedorov, N. A. Ermak, T. S. Geraschenko, E. B. Topolnitskii, N. A. Shefer, E. O. Rodionov, M. N. Stakheeva, “Polyarizatsiya makrofagov: mekhanizmy, markery i faktory induktsii”, Sibirskii onkologicheskii zhurnal, 21:4 (2022), 124–136 | DOI

[7] I. Yu. Malyshev, S. V. Kruglov, L. Yu. Bakhtina, E. V. Malysheva, M. Zubin, M. Norkin, “Stress-otvet i apoptoz/nekroz v pro- i antivospalitelnom fenotipe makrofagov”, Byulleten eksperimentalnoi biologii i meditsiny, 138:8 (2004), 162–165

[8] I. Yu. Malyshev, “Matrichnoe reprogrammirovanie immunnykh kletok i rol ego narusheniya v patogeneze opukholei”, Vestnik RONTs im. N. N. Blokhina RAMN, 23:2 (2012), 21–33

[9] I. Yu. Malyshev, “Fenomeny i signalnye mekhanizmy reprogrammirovaniya makrofagov”, Patologicheskaya fiziologiya i eksperimentalnaya terapiya, 59:2 (2015), 99–111

[10] A. Sica, M. Erreni, P. Allavena, C. Porta, “Macrophage polarization in pathology”, Cell Mol. Life Sci., 72:21 (2015), 4111–4126 | DOI

[11] Metchnikoff El., Immunity in the infectious diseases, Cambridge Univ.Press, Cambridge, 1905, 617 pp.

[12] A. N. Orekhov, V. A. Orekhova, N. G. Nikiforov, V. A. Myasoedova, A. V. Grechko, E. B. Romanenko, D. Zhang, D. A. Chistiakov, “Monocyte differentiation and macrophage polarization”, Vessel Plus, 3 (2019) | DOI

[13] E. R. Chernykh, E. Ya. Shevela, A. A. Ostanin, “Rol makrofagov v vosstanovlenii povrezhdenii tsentralnoi nervnoi sistemy: novye vozmozhnosti v lechenii nevrologicheskikh rasstroistv”, Meditsinskaya immunologiya, 19:1 (2017), 7–18 | DOI

[14] J. Hwang, M. Zheng, C. Wiraja, M. Cui, L. Yang, C. Xu, “Reprogramming of macrophages with macrophage cell membrane-derived nanoghosts”, Nanoscale Adv., 2 (2020), 5254–5262 | DOI

[15] I. E. Malysheva, E. L. Tikhonovich, E. K. Oleinik, L. V. Topchieva, O. V. Balan, “Polyarizatsiya makrofagov pri sarkoidoze”, Meditsinskaya immunologiya, 23:1 (2021), 7–16

[16] S. Mittal S. Kumar, P. Gupta, M. Singh, P. Chaluvally-Raghavan, S. Pradeep, “Metabolic reprogramming in tumor-associated macrophages in the ovarian tumor microenvironment”, Cancers, 14:21 (2022), 5224 | DOI

[17] Y. Liu, R. Xu, H. Gu, E. Zhang, J. Qu, W. Cao, X. Huang, H. Yan, J. He, Z. Cai, “Metabolic reprogramming in macrophage responses”, Biomarker Research, 9:1 (2021), 1–17 | DOI

[18] H. Cai, Y. Zhang, J. Wang, J. Gu, “Defects in Macrophage Reprogramming in Cancer Therapy: The Negative Impact of PD-L1/PD-1”, Front. Immunol., 12 (2021), 690869 | DOI

[19] V. M.T. Bart, R. J. Pickering, P. R. Taylor, N. Ipseiz, “Macrophage reprogramming for therapy”, Immunology, 163 (2021), 128–144 | DOI

[20] T. Baron, K. Hambraeus, J. Sundstrom, D. Erlinge, T. Jernberg, B. Lindahl, “TOTAL-AMI study group. Type 2 myocardial infarction in clinical practice”, Heart, 101 (2015), 101–106 | DOI

[21] C. Troidl, H. Mo?llmann, H. Nef, F. Masseli, S. Voss, S. Szardien, M. Willmer, A. Rolf, J. Rixe, K. Troidl, S. Kostin, C. Hamm, A. Elsasser, “Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction”, J. Cell. Mol. Med., 13:9B (2009), 3485–3496 | DOI

[22] S. Frantz, M. Nahrendorf, “Cardiac macrophages and their role in ischaemic heart disease”, Cardiovascular research, 102:2 (2014), 240–248 | DOI | MR

[23] A. Saxena, I. Russo, N. G. Frangogiannis, “Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges”, Translat. Res., 167:1 (2016), 152–166 | DOI

[24] Yu. S. Stafeev, M. Yu. Menshikov, V. A. Tkachuk, E. V. Parfenova, “Rol makrofagov v reparatsii miokarda posle povrezhdeniya i perspektivy metabolicheskogo pereprogrammirovaniya immunnykh kletok v tselyakh regulyatsii postinfarktnogo vosstanovleniya miokarda”, Kardiologiya, 57:12 (2017), 53–59

[25] M. Chen, X. Li, S. Wang, L. Yu, J. Tang, S. Zhou, “The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias”, Front. Physiol., 11 (2020), 1113 | DOI

[26] W. P. Lafuse, D. J. Wozniak, M. V. S. Rajaram, “Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair”, Cells, 10:1 (2020), 51 | DOI

[27] Y. Kim, S. Nurakhayev, A. Nurkesh, Z. Zharkinbekov, A. Saparov, “Macrophage polarization in cardiac tissue repair following myocardial infarction”, International journal of molecular sciences, 22:5 (2021), 2715 | DOI

[28] Y. Wang, M. Hou, S. Duan, Z. Zhao, X. Wu, Y. Chen, L. Yin, “Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti-inflammatory treatment of ischemia-reperfusion (IR) injury”, Bioactive Materials, 17 (2022), 320–333 | DOI

[29] M. A.C. Fontaine, H. Jin, M. Gagliardi, M. Rousch, E. Wijnands, M. Stoll, X. Li, L. Schurgers, C. Reutelingsperger, C. Schalkwijk et al, “Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair”, Adv. Sci., 10 (2023), 2203053 | DOI

[30] V. N. Sakharov, P. F. Litvitskii, “Matematicheskoe modelirovanie protsessa pereprogrammirovaniya makrofagov pri vospalenii i realizatsii immunnykh reaktsii: pregrady i perspektivy”, Sechenovskii vestnik, 2015, no. 1, 27–30

[31] O. F. Voropaeva, C. A. Tsgoev, “A Numerical Model of Inflammation Dynamics in the Core of Myocardial Infarction”, Journal of Applied and Industrial Mathematics, 13:2 (2019), 372–383 | DOI | MR | Zbl

[32] C. A. Tsgoev, O. F. Voropaeva, Y. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russian Journal of Numerical Analysis and Mathematical Modelling, 35:2 (2020), 111–126 | DOI | MR

[33] O. F. Voropaeva, C. A. Tsgoev, Yu. I. Shokin, “Numerical simulation of the inflammatory phase of myocardial infarction”, Journal of Applied Mechanics and Technical Physics, 62:3 (2021), 441–450 | DOI | MR

[34] O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda. I. Analiz prostranstvenno-vremennykh aspektov razvitiya mestnoi vospalitelnoi reaktsii”, Matematicheskaya biologiya i bioinformatika, 18:1 (2023), 49–71 | DOI

[35] Y. F. Jin, H. C. Han, J. Berger, Q. Dai, M. L. Lindsey, “Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling”, BMC Systems Biology, 5 (2011), 60 | DOI

[36] Y. Wang, T. Yang, Y. Ma, G. V. Halade, J. Zhang, M. L. Lindsey, Y. F. Jin, “Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction”, BMC Genomics, 13 (2012), S21 | DOI

[37] A. Saxena, M. Bujak, O. Frunza, M. Dobaczewski, C. Gonzalez-Quesada, B. Lu, C. Gerard, N. G. Frangogiannis, “CXCR3-independent actions of the CXC chemokine CXCL10 in the infarctedmyocardium and in isolated cardiac fibroblasts are mediated through proteoglycans”, Cardiovascular Research, 103 (2014), 217–227 | DOI

[38] M. Bujak, M. Dobaczewski, K. Chatila, L. H. Mendoza, N. Li, ReddyA, N. G. Frangogiannis, “Interleukin-1 Receptor Type I Signaling Critically Regulates Infarct Healing and Cardiac Remodeling”, Am. J. Pathol., 173 (2008), 57–67 | DOI

[39] V. L. van Zuylen, M. C. den Haan, H. Roelofs, W. E. Fibbe, M. J. Schalij, D. E. Atsma, “Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion”, SpringerPlus, 4 (2015), 336 | DOI

[40] M. Jung, Y. Ma, R. P. Iyer, K. Y. DeLeon-Pennell, A. Yabluchanskiy, M. R. Garrett, M. L. Lindsey, “IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation”, Basic research in cardiology, 112 (2017), 1–14 | DOI

[41] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967, 195 pp. | MR