Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a10, author = {O. F. Voropaeva and Ch. A. Tsgoev}, title = {Numerical modelling of myocardial infarction. {II.~Analysis} of macrophage polarization mechanism as a therapeutic target}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {367--404}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a10/} }
TY - JOUR AU - O. F. Voropaeva AU - Ch. A. Tsgoev TI - Numerical modelling of myocardial infarction. II.~Analysis of macrophage polarization mechanism as a therapeutic target JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 367 EP - 404 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a10/ LA - ru ID - MBB_2023_18_2_a10 ER -
%0 Journal Article %A O. F. Voropaeva %A Ch. A. Tsgoev %T Numerical modelling of myocardial infarction. II.~Analysis of macrophage polarization mechanism as a therapeutic target %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 367-404 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a10/ %G ru %F MBB_2023_18_2_a10
O. F. Voropaeva; Ch. A. Tsgoev. Numerical modelling of myocardial infarction. II.~Analysis of macrophage polarization mechanism as a therapeutic target. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 367-404. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a10/
[1] V. A. Chereshnev, E. Yu. Gusev, “Immunologiya vospaleniya: rol tsitokinov”, Meditsinskaya immunologiya, 3:3 (2001), 361–368
[2] A. A. Yarilin, Immunologiya, GEOTAR-Media, 2010, 749 pp.
[3] C. J. Ferrante, S. J. Leibovich, “Regulation of Macrophage Polarization and Wound Healing”, Advances in wound care, 1:1 (2011), 10–16 | DOI
[4] M. Hesketh, K. B. Sahin, Z. E. West, R. Z. Murray, “Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing”, Int. J. Mol. Sci., 18 (2017), 1545 | DOI
[5] L. P. Titov, “Monotsity, makrofagi i dendritnye kletki: genez, klassifikatsiya, immunobiologicheskie svoistva”, Ves. Nats. akad. navuk Belarusi. Ser. med. navuk, 15:3 (2018), 363–382 | DOI
[6] A. A. Fedorov, N. A. Ermak, T. S. Geraschenko, E. B. Topolnitskii, N. A. Shefer, E. O. Rodionov, M. N. Stakheeva, “Polyarizatsiya makrofagov: mekhanizmy, markery i faktory induktsii”, Sibirskii onkologicheskii zhurnal, 21:4 (2022), 124–136 | DOI
[7] I. Yu. Malyshev, S. V. Kruglov, L. Yu. Bakhtina, E. V. Malysheva, M. Zubin, M. Norkin, “Stress-otvet i apoptoz/nekroz v pro- i antivospalitelnom fenotipe makrofagov”, Byulleten eksperimentalnoi biologii i meditsiny, 138:8 (2004), 162–165
[8] I. Yu. Malyshev, “Matrichnoe reprogrammirovanie immunnykh kletok i rol ego narusheniya v patogeneze opukholei”, Vestnik RONTs im. N. N. Blokhina RAMN, 23:2 (2012), 21–33
[9] I. Yu. Malyshev, “Fenomeny i signalnye mekhanizmy reprogrammirovaniya makrofagov”, Patologicheskaya fiziologiya i eksperimentalnaya terapiya, 59:2 (2015), 99–111
[10] A. Sica, M. Erreni, P. Allavena, C. Porta, “Macrophage polarization in pathology”, Cell Mol. Life Sci., 72:21 (2015), 4111–4126 | DOI
[11] Metchnikoff El., Immunity in the infectious diseases, Cambridge Univ.Press, Cambridge, 1905, 617 pp.
[12] A. N. Orekhov, V. A. Orekhova, N. G. Nikiforov, V. A. Myasoedova, A. V. Grechko, E. B. Romanenko, D. Zhang, D. A. Chistiakov, “Monocyte differentiation and macrophage polarization”, Vessel Plus, 3 (2019) | DOI
[13] E. R. Chernykh, E. Ya. Shevela, A. A. Ostanin, “Rol makrofagov v vosstanovlenii povrezhdenii tsentralnoi nervnoi sistemy: novye vozmozhnosti v lechenii nevrologicheskikh rasstroistv”, Meditsinskaya immunologiya, 19:1 (2017), 7–18 | DOI
[14] J. Hwang, M. Zheng, C. Wiraja, M. Cui, L. Yang, C. Xu, “Reprogramming of macrophages with macrophage cell membrane-derived nanoghosts”, Nanoscale Adv., 2 (2020), 5254–5262 | DOI
[15] I. E. Malysheva, E. L. Tikhonovich, E. K. Oleinik, L. V. Topchieva, O. V. Balan, “Polyarizatsiya makrofagov pri sarkoidoze”, Meditsinskaya immunologiya, 23:1 (2021), 7–16
[16] S. Mittal S. Kumar, P. Gupta, M. Singh, P. Chaluvally-Raghavan, S. Pradeep, “Metabolic reprogramming in tumor-associated macrophages in the ovarian tumor microenvironment”, Cancers, 14:21 (2022), 5224 | DOI
[17] Y. Liu, R. Xu, H. Gu, E. Zhang, J. Qu, W. Cao, X. Huang, H. Yan, J. He, Z. Cai, “Metabolic reprogramming in macrophage responses”, Biomarker Research, 9:1 (2021), 1–17 | DOI
[18] H. Cai, Y. Zhang, J. Wang, J. Gu, “Defects in Macrophage Reprogramming in Cancer Therapy: The Negative Impact of PD-L1/PD-1”, Front. Immunol., 12 (2021), 690869 | DOI
[19] V. M.T. Bart, R. J. Pickering, P. R. Taylor, N. Ipseiz, “Macrophage reprogramming for therapy”, Immunology, 163 (2021), 128–144 | DOI
[20] T. Baron, K. Hambraeus, J. Sundstrom, D. Erlinge, T. Jernberg, B. Lindahl, “TOTAL-AMI study group. Type 2 myocardial infarction in clinical practice”, Heart, 101 (2015), 101–106 | DOI
[21] C. Troidl, H. Mo?llmann, H. Nef, F. Masseli, S. Voss, S. Szardien, M. Willmer, A. Rolf, J. Rixe, K. Troidl, S. Kostin, C. Hamm, A. Elsasser, “Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction”, J. Cell. Mol. Med., 13:9B (2009), 3485–3496 | DOI
[22] S. Frantz, M. Nahrendorf, “Cardiac macrophages and their role in ischaemic heart disease”, Cardiovascular research, 102:2 (2014), 240–248 | DOI | MR
[23] A. Saxena, I. Russo, N. G. Frangogiannis, “Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges”, Translat. Res., 167:1 (2016), 152–166 | DOI
[24] Yu. S. Stafeev, M. Yu. Menshikov, V. A. Tkachuk, E. V. Parfenova, “Rol makrofagov v reparatsii miokarda posle povrezhdeniya i perspektivy metabolicheskogo pereprogrammirovaniya immunnykh kletok v tselyakh regulyatsii postinfarktnogo vosstanovleniya miokarda”, Kardiologiya, 57:12 (2017), 53–59
[25] M. Chen, X. Li, S. Wang, L. Yu, J. Tang, S. Zhou, “The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias”, Front. Physiol., 11 (2020), 1113 | DOI
[26] W. P. Lafuse, D. J. Wozniak, M. V. S. Rajaram, “Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair”, Cells, 10:1 (2020), 51 | DOI
[27] Y. Kim, S. Nurakhayev, A. Nurkesh, Z. Zharkinbekov, A. Saparov, “Macrophage polarization in cardiac tissue repair following myocardial infarction”, International journal of molecular sciences, 22:5 (2021), 2715 | DOI
[28] Y. Wang, M. Hou, S. Duan, Z. Zhao, X. Wu, Y. Chen, L. Yin, “Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti-inflammatory treatment of ischemia-reperfusion (IR) injury”, Bioactive Materials, 17 (2022), 320–333 | DOI
[29] M. A.C. Fontaine, H. Jin, M. Gagliardi, M. Rousch, E. Wijnands, M. Stoll, X. Li, L. Schurgers, C. Reutelingsperger, C. Schalkwijk et al, “Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair”, Adv. Sci., 10 (2023), 2203053 | DOI
[30] V. N. Sakharov, P. F. Litvitskii, “Matematicheskoe modelirovanie protsessa pereprogrammirovaniya makrofagov pri vospalenii i realizatsii immunnykh reaktsii: pregrady i perspektivy”, Sechenovskii vestnik, 2015, no. 1, 27–30
[31] O. F. Voropaeva, C. A. Tsgoev, “A Numerical Model of Inflammation Dynamics in the Core of Myocardial Infarction”, Journal of Applied and Industrial Mathematics, 13:2 (2019), 372–383 | DOI | MR | Zbl
[32] C. A. Tsgoev, O. F. Voropaeva, Y. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russian Journal of Numerical Analysis and Mathematical Modelling, 35:2 (2020), 111–126 | DOI | MR
[33] O. F. Voropaeva, C. A. Tsgoev, Yu. I. Shokin, “Numerical simulation of the inflammatory phase of myocardial infarction”, Journal of Applied Mechanics and Technical Physics, 62:3 (2021), 441–450 | DOI | MR
[34] O. F. Voropaeva, Ch. A. Tsgoev, “Chislennoe modelirovanie infarkta miokarda. I. Analiz prostranstvenno-vremennykh aspektov razvitiya mestnoi vospalitelnoi reaktsii”, Matematicheskaya biologiya i bioinformatika, 18:1 (2023), 49–71 | DOI
[35] Y. F. Jin, H. C. Han, J. Berger, Q. Dai, M. L. Lindsey, “Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling”, BMC Systems Biology, 5 (2011), 60 | DOI
[36] Y. Wang, T. Yang, Y. Ma, G. V. Halade, J. Zhang, M. L. Lindsey, Y. F. Jin, “Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction”, BMC Genomics, 13 (2012), S21 | DOI
[37] A. Saxena, M. Bujak, O. Frunza, M. Dobaczewski, C. Gonzalez-Quesada, B. Lu, C. Gerard, N. G. Frangogiannis, “CXCR3-independent actions of the CXC chemokine CXCL10 in the infarctedmyocardium and in isolated cardiac fibroblasts are mediated through proteoglycans”, Cardiovascular Research, 103 (2014), 217–227 | DOI
[38] M. Bujak, M. Dobaczewski, K. Chatila, L. H. Mendoza, N. Li, ReddyA, N. G. Frangogiannis, “Interleukin-1 Receptor Type I Signaling Critically Regulates Infarct Healing and Cardiac Remodeling”, Am. J. Pathol., 173 (2008), 57–67 | DOI
[39] V. L. van Zuylen, M. C. den Haan, H. Roelofs, W. E. Fibbe, M. J. Schalij, D. E. Atsma, “Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion”, SpringerPlus, 4 (2015), 336 | DOI
[40] M. Jung, Y. Ma, R. P. Iyer, K. Y. DeLeon-Pennell, A. Yabluchanskiy, M. R. Garrett, M. L. Lindsey, “IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation”, Basic research in cardiology, 112 (2017), 1–14 | DOI
[41] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967, 195 pp. | MR