Application of mathematical models of the dynamics of the epidemic acute respiratory viral infections to increase the efficiency of epidemiological surveillance
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 517-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

Uncertainty in the calculations of forecasts of the spread of epidemic acute respiratory infections obtained using mathematical models, associated with data error and uncertainty in the choice of a model, as well as the lack of verification of modeling results by interdisciplinary teams including epidemiology specialists, prevent the correct prediction of the effectiveness of disease control measures. In this paper, we propose a solution to these problems by using a software package consisting of a family of epidemic models, methods for estimating the error of output data depending on the error of the initial morbidity data, as well as a graphical interface with the possibility of manual correction of the results of automatic calibration and generation of epidemic bulletins. The novelty of the presented study is the methodology for integrating epidemic models into software tools used by supervisory authorities, which allows to supplement weekly bulletins and annual epidemiological reports in semi-automatic mode with a quantitative interval estimation of the error of calculated indicators. The ultimate goal is to provide the supervisory authorities with informative and promptly obtained calculated data for decision-making in the field of infection control.
@article{MBB_2023_18_2_a0,
     author = {V. Leonenko and A. I. Korzin and D. M. Danilenko},
     title = {Application of mathematical models of the dynamics of the epidemic acute respiratory viral infections to increase the efficiency of epidemiological surveillance},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {517--542},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a0/}
}
TY  - JOUR
AU  - V. Leonenko
AU  - A. I. Korzin
AU  - D. M. Danilenko
TI  - Application of mathematical models of the dynamics of the epidemic acute respiratory viral infections to increase the efficiency of epidemiological surveillance
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 517
EP  - 542
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a0/
LA  - ru
ID  - MBB_2023_18_2_a0
ER  - 
%0 Journal Article
%A V. Leonenko
%A A. I. Korzin
%A D. M. Danilenko
%T Application of mathematical models of the dynamics of the epidemic acute respiratory viral infections to increase the efficiency of epidemiological surveillance
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 517-542
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a0/
%G ru
%F MBB_2023_18_2_a0
V. Leonenko; A. I. Korzin; D. M. Danilenko. Application of mathematical models of the dynamics of the epidemic acute respiratory viral infections to increase the efficiency of epidemiological surveillance. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 517-542. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a0/

[1] I. Huaman, E. P. Plesovskaya, V. N. Leonenko, “Matching model complexity with data detail: influenza propagation modeling as a case study”, 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), IEEE, 2022, 650–654 | DOI | MR

[2] K. Sahatova, A. Kharlunin, I. Huaman, V. Leonenko, “Accounting for Data Uncertainty in Modeling Acute Respiratory Infections: Influenza in Saint Petersburg as a Case Study”, International Conference on Computational Science, Springer Nature Switzerland, Cham, 2023, 286–299 | DOI

[3] Cauchemez, S., A. J. Valleron, P. Y. Boelle, A. Flahault, N. M. Ferguson, “Estimating the impact of school closure on influenza transmission from Sentinel data”, Nature, 452:7188 (2008), 750–754 | DOI

[4] P. Bajardi, C. Poletto, J. J. Ramasco, M. Tizzoni, V. Colizza, A. Vespignani, “Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic”, PloS one, 6:1 (2011), e16591 | DOI

[5] J. M. Bridgen J. R.E. Cummings D. A.T. Read, A. Ho, C. P. Jewell, “Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates”, Philosophical Transactions of the Royal Society B, 376:1829 (2021), 20200265 | DOI

[6] B. F. Maier, D. Brockmann, “Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China”, Science, 368:6492 (2020), 742–746 | DOI | MR | Zbl

[7] S. Kumar, J. J. Grefenstette, D. Galloway, S. M. Albert, D. S. Burke, “Policies to reduce influenza in the workplace: impact assessments using an agent-based model”, American journal of public health, 103:8 (2013), 1406–1411 | DOI

[8] S. Lukens, J. DePasse, R. Rosenfeld, E. Ghedin, E. Mochan, S. T. Brown, J. Grefenstette, D. S. Burke, D. Swigon, G. Clermont, “A large-scale immuno-epidemiological simulation of influenza A epidemics”, BMC public health, 14 (2014), 1–15 | DOI

[9] D. Guo, K. C. Li, T. R. Peters, B. M. Snively, K. A. Poehling, X. Zhou, “Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it”, Scientific reports, 5:1 (2015), 8980 | DOI | MR

[10] N. Hoertel, M. Blachier, C. Blanco, M. Olfson, M. Massetti, F. Limosin, H. Leleu, “Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of various intervention strategies”, MedRxiv, 2020 | DOI

[11] C. Viboud, A. Vespignani, “The future of influenza forecasts”, Proceedings of the National Academy of Sciences, 116:8 (2019), 2802–2804 | DOI

[12] P. Arora, H. Kumar, B. K. Panigrahi, “Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India”, Chaos, solitons fractals, 139 (2020), 110017 | DOI | MR

[13] Measles Simulator, FRED. U.S. (data obrascheniya: 29.11.2023) https://fred.publichealth.pitt.edu/measles

[14] Matematicheskoe modelirovanie rasprostraneniya infektsionnykh zabolevanii (data obrascheniya: 29.11.2023) https://covid19-modeling.ru/modeling

[15] OpenAI. Epidemic Calculator, (data obrascheniya: 29.11.2023) https://gabgoh.github.io/COVID/

[16] P. P. Levashkin, “Informatsionnaya sistema dlya vizualizatsii dannykh KOVID-19 i izucheniya kontrolnykh parametrov modeli rasprostraneniya pandemii v Rossii i mire”, Informatsionnoe obschestvo, 2023, no. 3, 55–68 | DOI

[17] Kouprianov, A., Monitoring COVID-19 epidemic in St. Petersburg, Russia: Data and scripts (data obrascheniya: 29.11.2023) https://github.com/alexei-kouprianov/COVID-19.SPb.monitoring

[18] I. Huaman, V. Leonenko, “Does Complex Mean Accurate: Comparing COVID-19 Propagation Models with Different Structural Complexity”, International Conference on Computational Science, Springer Nature Switzerland, Cham, 2023, 270–277 | DOI

[19] T. Harko, F. S.N. Lobo, M. K. Mak, “Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates”, Applied Mathematics and Computation, 236 (2014), 184–194 | DOI | MR | Zbl

[20] O. V. Baroyan, L. A. Rvachev, Yu. G. Ivannikov, Modelirovanie i prognozirovanie epidemii grippa dlya territorii SSSR, In-t epidemiologii i mikrobiologii im. N.F. Gamalei AMN SSSR, M., 1977, 546 pp.

[21] V. Leonenko, G. Bobashev, “Analyzing influenza outbreaks in Russia using an age-structured dynamic transmission model”, Epidemics, 29 (2019), 100358 | DOI

[22] R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, 1991, 757 pp.

[23] V. N. Leonenko, “Herd immunity levels and multi-strain influenza epidemics in Russia: a modelling study”, Russian Journal of Numerical Analysis and Mathematical Modelling, 36:5 (2021), 279–291 | DOI | MR | Zbl

[24] E. M. Hill, S. Petrou, H. Forster, S. de Lusignan, I. Yonova, Keeling M. J., “Seasonal influenza: Modelling approaches to capture immunity propagation”, PLoS computational biology, 15:10 (2019), e1007096 | DOI

[25] K. Sahatova, A. Kharlunin, V. Leonenko, “A Novel Approach to Modeling and Visualisation of Epidemic Outbreaks: Combining Manual and Automatic Calibration”, 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB) (Novosibirsk, Russian Federation), 2023, 221–226 | DOI

[26] Ezhenedelnyi byulleten po grippu, , FGBU NII grippa imeni A.A. Smorodintseva Minzdrava RF (data obrascheniya: 29.11.2023) www.influenza.spb.ru/system/epidemic_situation/laboratory_diagnostics/

[27] E. P. Selkova, T. A. Grenkova, N. V. Gudova, A. S. Oganesyan, “Itogi epidsezona 2017/18 gg. po grippu i ostroi respiratornoi virusnoi infektsii. Osobennosti etiotropnoi terapii”, Russkii meditsinskii zhurnal. Meditsinskoe obozrenie, 2:11 (2018), 49–53

[28] Analiticheskaya zapiska k Pravitelstvu Sankt-Peterburga. 26.03.2020, Ekspertnaya gruppa po meram borby s pandemiei COVID-19 (data obrascheniya: 29.11.2023) https://static.ngs.ru/news/2020/99/images/e707764127224490f11a985fed7762b2.pdf

[29] V. Grimm, A. Heinlein, A. Klawonn, M. Lanser, J. Weber, “Estimating the time-dependent contact rate of SIR and SEIR models in mathematical epidemiology using physics-informed neural networks”, Electronic Transactions on Numerical Analysis, 56 (2022), 1–27 | MR | Zbl

[30] S. O. Arik, J. Shor, R. Sinha, J. Yoon, J. R. Ledsam, L. T. Le, M. W. Dusenberry, N. C. Yoder, K. Popendorf, A. Epshteyn et al., “A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan”, NPJ digital medicine, 4:1 (2021), 146 | DOI

[31] Epidemic prediction initiative, , PhiResearchLab (data obrascheniya: 29.11.2023) https://predict.phiresearchlab.org/

[32] N. G. Reich, L. C. Brooks, S. J. Fox, S. Kandula, C. J. McGowan, E. Moore, D. Osthus, E. L. Ray, A. Tushar, T. K. Yamana et al, “A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States”, Proceedings of the National Academy of Sciences, 116:8 (2019), 3146–3154 | DOI