Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_2_a0, author = {V. Leonenko and A. I. Korzin and D. M. Danilenko}, title = {Application of mathematical models of the dynamics of the epidemic acute respiratory viral infections to increase the efficiency of epidemiological surveillance}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {517--542}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a0/} }
TY - JOUR AU - V. Leonenko AU - A. I. Korzin AU - D. M. Danilenko TI - Application of mathematical models of the dynamics of the epidemic acute respiratory viral infections to increase the efficiency of epidemiological surveillance JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 517 EP - 542 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a0/ LA - ru ID - MBB_2023_18_2_a0 ER -
%0 Journal Article %A V. Leonenko %A A. I. Korzin %A D. M. Danilenko %T Application of mathematical models of the dynamics of the epidemic acute respiratory viral infections to increase the efficiency of epidemiological surveillance %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 517-542 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a0/ %G ru %F MBB_2023_18_2_a0
V. Leonenko; A. I. Korzin; D. M. Danilenko. Application of mathematical models of the dynamics of the epidemic acute respiratory viral infections to increase the efficiency of epidemiological surveillance. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 2, pp. 517-542. http://geodesic.mathdoc.fr/item/MBB_2023_18_2_a0/
[1] I. Huaman, E. P. Plesovskaya, V. N. Leonenko, “Matching model complexity with data detail: influenza propagation modeling as a case study”, 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), IEEE, 2022, 650–654 | DOI | MR
[2] K. Sahatova, A. Kharlunin, I. Huaman, V. Leonenko, “Accounting for Data Uncertainty in Modeling Acute Respiratory Infections: Influenza in Saint Petersburg as a Case Study”, International Conference on Computational Science, Springer Nature Switzerland, Cham, 2023, 286–299 | DOI
[3] Cauchemez, S., A. J. Valleron, P. Y. Boelle, A. Flahault, N. M. Ferguson, “Estimating the impact of school closure on influenza transmission from Sentinel data”, Nature, 452:7188 (2008), 750–754 | DOI
[4] P. Bajardi, C. Poletto, J. J. Ramasco, M. Tizzoni, V. Colizza, A. Vespignani, “Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic”, PloS one, 6:1 (2011), e16591 | DOI
[5] J. M. Bridgen J. R.E. Cummings D. A.T. Read, A. Ho, C. P. Jewell, “Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates”, Philosophical Transactions of the Royal Society B, 376:1829 (2021), 20200265 | DOI
[6] B. F. Maier, D. Brockmann, “Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China”, Science, 368:6492 (2020), 742–746 | DOI | MR | Zbl
[7] S. Kumar, J. J. Grefenstette, D. Galloway, S. M. Albert, D. S. Burke, “Policies to reduce influenza in the workplace: impact assessments using an agent-based model”, American journal of public health, 103:8 (2013), 1406–1411 | DOI
[8] S. Lukens, J. DePasse, R. Rosenfeld, E. Ghedin, E. Mochan, S. T. Brown, J. Grefenstette, D. S. Burke, D. Swigon, G. Clermont, “A large-scale immuno-epidemiological simulation of influenza A epidemics”, BMC public health, 14 (2014), 1–15 | DOI
[9] D. Guo, K. C. Li, T. R. Peters, B. M. Snively, K. A. Poehling, X. Zhou, “Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it”, Scientific reports, 5:1 (2015), 8980 | DOI | MR
[10] N. Hoertel, M. Blachier, C. Blanco, M. Olfson, M. Massetti, F. Limosin, H. Leleu, “Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of various intervention strategies”, MedRxiv, 2020 | DOI
[11] C. Viboud, A. Vespignani, “The future of influenza forecasts”, Proceedings of the National Academy of Sciences, 116:8 (2019), 2802–2804 | DOI
[12] P. Arora, H. Kumar, B. K. Panigrahi, “Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India”, Chaos, solitons fractals, 139 (2020), 110017 | DOI | MR
[13] Measles Simulator, FRED. U.S. (data obrascheniya: 29.11.2023) https://fred.publichealth.pitt.edu/measles
[14] Matematicheskoe modelirovanie rasprostraneniya infektsionnykh zabolevanii (data obrascheniya: 29.11.2023) https://covid19-modeling.ru/modeling
[15] OpenAI. Epidemic Calculator, (data obrascheniya: 29.11.2023) https://gabgoh.github.io/COVID/
[16] P. P. Levashkin, “Informatsionnaya sistema dlya vizualizatsii dannykh KOVID-19 i izucheniya kontrolnykh parametrov modeli rasprostraneniya pandemii v Rossii i mire”, Informatsionnoe obschestvo, 2023, no. 3, 55–68 | DOI
[17] Kouprianov, A., Monitoring COVID-19 epidemic in St. Petersburg, Russia: Data and scripts (data obrascheniya: 29.11.2023) https://github.com/alexei-kouprianov/COVID-19.SPb.monitoring
[18] I. Huaman, V. Leonenko, “Does Complex Mean Accurate: Comparing COVID-19 Propagation Models with Different Structural Complexity”, International Conference on Computational Science, Springer Nature Switzerland, Cham, 2023, 270–277 | DOI
[19] T. Harko, F. S.N. Lobo, M. K. Mak, “Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates”, Applied Mathematics and Computation, 236 (2014), 184–194 | DOI | MR | Zbl
[20] O. V. Baroyan, L. A. Rvachev, Yu. G. Ivannikov, Modelirovanie i prognozirovanie epidemii grippa dlya territorii SSSR, In-t epidemiologii i mikrobiologii im. N.F. Gamalei AMN SSSR, M., 1977, 546 pp.
[21] V. Leonenko, G. Bobashev, “Analyzing influenza outbreaks in Russia using an age-structured dynamic transmission model”, Epidemics, 29 (2019), 100358 | DOI
[22] R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, 1991, 757 pp.
[23] V. N. Leonenko, “Herd immunity levels and multi-strain influenza epidemics in Russia: a modelling study”, Russian Journal of Numerical Analysis and Mathematical Modelling, 36:5 (2021), 279–291 | DOI | MR | Zbl
[24] E. M. Hill, S. Petrou, H. Forster, S. de Lusignan, I. Yonova, Keeling M. J., “Seasonal influenza: Modelling approaches to capture immunity propagation”, PLoS computational biology, 15:10 (2019), e1007096 | DOI
[25] K. Sahatova, A. Kharlunin, V. Leonenko, “A Novel Approach to Modeling and Visualisation of Epidemic Outbreaks: Combining Manual and Automatic Calibration”, 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB) (Novosibirsk, Russian Federation), 2023, 221–226 | DOI
[26] Ezhenedelnyi byulleten po grippu, , FGBU NII grippa imeni A.A. Smorodintseva Minzdrava RF (data obrascheniya: 29.11.2023) www.influenza.spb.ru/system/epidemic_situation/laboratory_diagnostics/
[27] E. P. Selkova, T. A. Grenkova, N. V. Gudova, A. S. Oganesyan, “Itogi epidsezona 2017/18 gg. po grippu i ostroi respiratornoi virusnoi infektsii. Osobennosti etiotropnoi terapii”, Russkii meditsinskii zhurnal. Meditsinskoe obozrenie, 2:11 (2018), 49–53
[28] Analiticheskaya zapiska k Pravitelstvu Sankt-Peterburga. 26.03.2020, Ekspertnaya gruppa po meram borby s pandemiei COVID-19 (data obrascheniya: 29.11.2023) https://static.ngs.ru/news/2020/99/images/e707764127224490f11a985fed7762b2.pdf
[29] V. Grimm, A. Heinlein, A. Klawonn, M. Lanser, J. Weber, “Estimating the time-dependent contact rate of SIR and SEIR models in mathematical epidemiology using physics-informed neural networks”, Electronic Transactions on Numerical Analysis, 56 (2022), 1–27 | MR | Zbl
[30] S. O. Arik, J. Shor, R. Sinha, J. Yoon, J. R. Ledsam, L. T. Le, M. W. Dusenberry, N. C. Yoder, K. Popendorf, A. Epshteyn et al., “A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan”, NPJ digital medicine, 4:1 (2021), 146 | DOI
[31] Epidemic prediction initiative, , PhiResearchLab (data obrascheniya: 29.11.2023) https://predict.phiresearchlab.org/
[32] N. G. Reich, L. C. Brooks, S. J. Fox, S. Kandula, C. J. McGowan, E. Moore, D. Osthus, E. L. Ray, A. Tushar, T. K. Yamana et al, “A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States”, Proceedings of the National Academy of Sciences, 116:8 (2019), 3146–3154 | DOI