Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_1_a9, author = {O. F. Voropaeva and Ch. A. Tsgoev}, title = {Numerical modelling of myocardial infarction. {I.~Analysis} of spatiotemporal aspects of the local inflammatory response}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {49--71}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a9/} }
TY - JOUR AU - O. F. Voropaeva AU - Ch. A. Tsgoev TI - Numerical modelling of myocardial infarction. I.~Analysis of spatiotemporal aspects of the local inflammatory response JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 49 EP - 71 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a9/ LA - ru ID - MBB_2023_18_1_a9 ER -
%0 Journal Article %A O. F. Voropaeva %A Ch. A. Tsgoev %T Numerical modelling of myocardial infarction. I.~Analysis of spatiotemporal aspects of the local inflammatory response %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 49-71 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a9/ %G ru %F MBB_2023_18_1_a9
O. F. Voropaeva; Ch. A. Tsgoev. Numerical modelling of myocardial infarction. I.~Analysis of spatiotemporal aspects of the local inflammatory response. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 49-71. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a9/
[1] K. Thygesen, J. S. Alpert, A. S. Jaffe, B. R. Chaitman, J. J. Bax, D. A. Morrow, H. D. White et al, “Fourth universal definition of myocardial infarction”, Circulation, 138:20 (2018), e618-e651 | DOI
[2] J. Chen, D. K. Ceholski, L. Liang, K. Fish, R. J. Hajjar, “Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice”, Am. J. Physiol. Heart Circ. Physiol., 313 (2017), H275-H282 | DOI
[3] T. P. Martin, E. A. MacDonald, A. A.M. Elbassioni, D. O'Toole, A. A.I. Zaeri, S. A. Nicklin, G. A. Gray, C. M. Loughrey, “Preclinical models of myocardial infarction: from mechanism to translation”, British J. Pharmacol, 179 (2022), 770–791 | DOI
[4] M. L. Lindsey, R. Bolli, J. M. Jr. Canty, X. J. Du, N. G. Frangogiannis, S. Frantz, R. G. Gourdie, J. W. Holmes, S. P. Jones, R. A. Kloner, D. J. Lefer, R. Liao, E. Murphy, P. Ping, K. Przyklenk, F. A. Recchia, L. Schwartz Longacre, C. M. Ripplinger, J. E. VanEyk, G. Heusch, “Guidelines for experimental models of myocardial ischemia and infarction”, Am. J. Physiol. Heart Circ. Physiol, 314 (2018), H812-H838 | DOI
[5] H. Kolesova, M. Bartos, W. C. Hsieh, V. Olejnickova, D. Sedmera, “Novel approaches to study coronary vasculature development in mice”, Developmental Dynamics, 247 (2018), 1018–1027 | DOI
[6] A. Saxena, I. Russo, N. G. Frangogiannis, “Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges”, Translat. Res, 167:1 (2016), 152–166 | DOI
[7] M. L. Entman, K. Youker, T. Shoji, G. Kukielka, S. B. Shappell, A. A. Taylor, C. W. Smith, “Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence”, J. Clin. Invest., 90 (1992), 1335–1345 | DOI
[8] L. M. Nepomnyaschikh, E. L. Lushnikova, D. E. Semenov, Regenerativno-plasticheskaya nedostatochnost serdtsa: Morfologicheskie osnovy i molekulyarnye mekhanizmy, Izd-vo RAMN, M., 2003
[9] S. S. Simakov, “Sovremennye metody matematicheskogo modelirovaniya krovotoka c pomoschyu osrednennykh modelei”, Kompyuternye issledovaniya i modelirovanie, 10:5 (2018), 581–604
[10] C. A. Tsgoev, O. F. Voropaeva, Yu. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russ. J. Numer. Anal. Math. Modelling, 35:2 (2020), 111–126 | DOI | MR
[11] O. F. Voropaeva, Ch. A. Tsgoev, “Chislennaya model dinamiki faktorov vospaleniya v yadre infarkta miokarda”, Sibirskii zhurnal industrialnoi matematiki, 22:2 (78) (2019), 13–26 | Zbl
[12] Y. F. Jin, H. C. Han, J. Berger, Q. Dai, M. L. Lindsey, “Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling”, BMC Systems Biology, 5 (2011), 60 | DOI
[13] Y. Wang, T. Yang, Y. Ma, G. V. Halade, J. Zhang, M. L. Lindsey, Y. F. Jin, “Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction”, BMC Genomics, 13 (2012)
[14] O. F. Voropaeva, Ch. A. Tsgoev, Yu. I. Shokin, “Chislennoe modelirovanie vospalitelnoi fazy infarkta miokarda”, Prikladnaya mekhanika i tekhnicheskaya fizika, 62:3 (2021), 105–117 | DOI
[15] N. Moise, A. A. Friedman, “Mathematical model of immunomodulatory treatment in myocardial infarction”, J. Theoretical Biology, 544 (2022), 111–122 | DOI | MR
[16] R. H. Anderson, S. Y. Ho, K. Redmann, D. Sanchez-Quintana, P. P. Lunkenheimer, “The anatomical arrangement of the myocardial cells making up the ventricular mass”, European Journal of Cardio-thoracic Surgery, 28 (2005), 517–525 | DOI
[17] Z. A. Gouda, Y. H. A. Elewa, A. O. Selim, “Histological architecture of cardiac myofibers composing the left ventricle of murine heart”, Journal of Histology Histopathology, 2 (2015), 2 | DOI
[18] P. C. Lin, U. Kreutzer, T. Jue, “Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture”, Biophysical Journal, 92 (2007), 2608–2620 | DOI
[19] G. J. Strijkers, A. Bouts, W. M. Blankesteijn, T. H. Peeters, A. Vilanova, M. C. van Prooijen, H. M. Sanders, E. Heijman, K. Nicolay, “Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse”, NMR in Biomedicine, 22 (2009), 182–190 | DOI
[20] A. Saxena, M. Bujak, O. Frunza, M. Dobaczewski, C. Gonzalez-Quesada, B. Lu, C. Gerard, N. G. Frangogiannis, “CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans”, Cardiovascular Research, 103 (2014), 217–227 | DOI
[21] M. Bujak, M. Dobaczewski, K. Chatila, L. H. Mendoza, N. Li, A. Reddy, N. G. Frangogiannis, “Interleukin-1 Receptor type I signaling critically regulates infarct healing and cardiac remodeling”, Am. J. Pathol, 173 (2008), 57–67 | DOI
[22] V. L. Zuylen, M. Haan, H. Roelofs, W. E. Fibbe, M. J. Schalij, D. E. Atsma, “Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion”, SpringerPlus, 4 (2015)
[23] E. W. Hsu, R. Xue, A. Holmes, J. R. Forder, “Delayed reduction of tissue water diffusion after myocardial ischemia”, Am. J. Physiol., 275 (1998), H697-H702
[24] N. Beyhoff, D. Lohr, A. Foryst-Ludwig, R. Klopfleisch, S. Brix, J. Grune, A. Thiele, L. Erfinanda, A. Tabuchi, W. M. Kuebler, B. Pieske, L. M. Schreiber, U. Kintscher, “Characterization of myocardial microstructure and function in an experimental model of isolated / subendocardial damage”, Hypertension, 74 (2019), 295–304 | DOI
[25] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka. Sib. otd., Novosibirsk, 1967, 195 pp. | MR
[26] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU., ser. Matematika i mekhanika, 1 (1937), 1–26
[27] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 480 pp.
[28] A. M. Turing, “The chemical basis of morphogenesis”, Phyl. Trans. Roy. Soc., 237 (1952), 37–72 | MR | Zbl