Numerical modelling of myocardial infarction. I.~Analysis of spatiotemporal aspects of the local inflammatory response
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 49-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of numerical modelling of the necrotic death of myocardial cells and immune response dynamics in type II ischemic infarction are presented. The initial conditions were consistent with the experimental data. The adopted minimal mathematical model focused on the balance of pro- and anti-inflammatory factors of aseptic inflammation and their influence on the process of cardiomyocyte death. The issue of the formation of nonlinear dynamic structures in the adopted reaction-diffusion system of equations in the absence of convective terms has been examined. It is shown that a stable localization of the solution of the initialboundary value problem within the spatial region of practically unchanged size is observed in a fairly wide range of parameters of the initial conditions set in the form of bell-shaped finite functions. Qualitative properties of solutions allow biological interpretation. Within the framework of the adopted model, we considered several important examples and, on this basis, described a typical scenario of a heart attack with a favorable outcome. We have studied the most general patterns of the formation of demarcation inflammation near a large necrosis focus in a typical acute infarction scenario, taking into account individual differences in the topology of the coronary vascular network and the topography of the infarction. The adequacy of the results is confirmed by quantitative and qualitative agreement with a fairly wide range of experimental data on the dynamics of infarction in the left ventricle of the mouse heart.
@article{MBB_2023_18_1_a9,
     author = {O. F. Voropaeva and Ch. A. Tsgoev},
     title = {Numerical modelling of myocardial infarction. {I.~Analysis} of spatiotemporal aspects of the local inflammatory response},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {49--71},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a9/}
}
TY  - JOUR
AU  - O. F. Voropaeva
AU  - Ch. A. Tsgoev
TI  - Numerical modelling of myocardial infarction. I.~Analysis of spatiotemporal aspects of the local inflammatory response
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 49
EP  - 71
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a9/
LA  - ru
ID  - MBB_2023_18_1_a9
ER  - 
%0 Journal Article
%A O. F. Voropaeva
%A Ch. A. Tsgoev
%T Numerical modelling of myocardial infarction. I.~Analysis of spatiotemporal aspects of the local inflammatory response
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 49-71
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a9/
%G ru
%F MBB_2023_18_1_a9
O. F. Voropaeva; Ch. A. Tsgoev. Numerical modelling of myocardial infarction. I.~Analysis of spatiotemporal aspects of the local inflammatory response. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 49-71. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a9/

[1] K. Thygesen, J. S. Alpert, A. S. Jaffe, B. R. Chaitman, J. J. Bax, D. A. Morrow, H. D. White et al, “Fourth universal definition of myocardial infarction”, Circulation, 138:20 (2018), e618-e651 | DOI

[2] J. Chen, D. K. Ceholski, L. Liang, K. Fish, R. J. Hajjar, “Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice”, Am. J. Physiol. Heart Circ. Physiol., 313 (2017), H275-H282 | DOI

[3] T. P. Martin, E. A. MacDonald, A. A.M. Elbassioni, D. O'Toole, A. A.I. Zaeri, S. A. Nicklin, G. A. Gray, C. M. Loughrey, “Preclinical models of myocardial infarction: from mechanism to translation”, British J. Pharmacol, 179 (2022), 770–791 | DOI

[4] M. L. Lindsey, R. Bolli, J. M. Jr. Canty, X. J. Du, N. G. Frangogiannis, S. Frantz, R. G. Gourdie, J. W. Holmes, S. P. Jones, R. A. Kloner, D. J. Lefer, R. Liao, E. Murphy, P. Ping, K. Przyklenk, F. A. Recchia, L. Schwartz Longacre, C. M. Ripplinger, J. E. VanEyk, G. Heusch, “Guidelines for experimental models of myocardial ischemia and infarction”, Am. J. Physiol. Heart Circ. Physiol, 314 (2018), H812-H838 | DOI

[5] H. Kolesova, M. Bartos, W. C. Hsieh, V. Olejnickova, D. Sedmera, “Novel approaches to study coronary vasculature development in mice”, Developmental Dynamics, 247 (2018), 1018–1027 | DOI

[6] A. Saxena, I. Russo, N. G. Frangogiannis, “Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges”, Translat. Res, 167:1 (2016), 152–166 | DOI

[7] M. L. Entman, K. Youker, T. Shoji, G. Kukielka, S. B. Shappell, A. A. Taylor, C. W. Smith, “Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence”, J. Clin. Invest., 90 (1992), 1335–1345 | DOI

[8] L. M. Nepomnyaschikh, E. L. Lushnikova, D. E. Semenov, Regenerativno-plasticheskaya nedostatochnost serdtsa: Morfologicheskie osnovy i molekulyarnye mekhanizmy, Izd-vo RAMN, M., 2003

[9] S. S. Simakov, “Sovremennye metody matematicheskogo modelirovaniya krovotoka c pomoschyu osrednennykh modelei”, Kompyuternye issledovaniya i modelirovanie, 10:5 (2018), 581–604

[10] C. A. Tsgoev, O. F. Voropaeva, Yu. I. Shokin, “Mathematical modelling of acute phase of myocardial infarction”, Russ. J. Numer. Anal. Math. Modelling, 35:2 (2020), 111–126 | DOI | MR

[11] O. F. Voropaeva, Ch. A. Tsgoev, “Chislennaya model dinamiki faktorov vospaleniya v yadre infarkta miokarda”, Sibirskii zhurnal industrialnoi matematiki, 22:2 (78) (2019), 13–26 | Zbl

[12] Y. F. Jin, H. C. Han, J. Berger, Q. Dai, M. L. Lindsey, “Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling”, BMC Systems Biology, 5 (2011), 60 | DOI

[13] Y. Wang, T. Yang, Y. Ma, G. V. Halade, J. Zhang, M. L. Lindsey, Y. F. Jin, “Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction”, BMC Genomics, 13 (2012)

[14] O. F. Voropaeva, Ch. A. Tsgoev, Yu. I. Shokin, “Chislennoe modelirovanie vospalitelnoi fazy infarkta miokarda”, Prikladnaya mekhanika i tekhnicheskaya fizika, 62:3 (2021), 105–117 | DOI

[15] N. Moise, A. A. Friedman, “Mathematical model of immunomodulatory treatment in myocardial infarction”, J. Theoretical Biology, 544 (2022), 111–122 | DOI | MR

[16] R. H. Anderson, S. Y. Ho, K. Redmann, D. Sanchez-Quintana, P. P. Lunkenheimer, “The anatomical arrangement of the myocardial cells making up the ventricular mass”, European Journal of Cardio-thoracic Surgery, 28 (2005), 517–525 | DOI

[17] Z. A. Gouda, Y. H. A. Elewa, A. O. Selim, “Histological architecture of cardiac myofibers composing the left ventricle of murine heart”, Journal of Histology Histopathology, 2 (2015), 2 | DOI

[18] P. C. Lin, U. Kreutzer, T. Jue, “Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture”, Biophysical Journal, 92 (2007), 2608–2620 | DOI

[19] G. J. Strijkers, A. Bouts, W. M. Blankesteijn, T. H. Peeters, A. Vilanova, M. C. van Prooijen, H. M. Sanders, E. Heijman, K. Nicolay, “Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse”, NMR in Biomedicine, 22 (2009), 182–190 | DOI

[20] A. Saxena, M. Bujak, O. Frunza, M. Dobaczewski, C. Gonzalez-Quesada, B. Lu, C. Gerard, N. G. Frangogiannis, “CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans”, Cardiovascular Research, 103 (2014), 217–227 | DOI

[21] M. Bujak, M. Dobaczewski, K. Chatila, L. H. Mendoza, N. Li, A. Reddy, N. G. Frangogiannis, “Interleukin-1 Receptor type I signaling critically regulates infarct healing and cardiac remodeling”, Am. J. Pathol, 173 (2008), 57–67 | DOI

[22] V. L. Zuylen, M. Haan, H. Roelofs, W. E. Fibbe, M. J. Schalij, D. E. Atsma, “Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion”, SpringerPlus, 4 (2015)

[23] E. W. Hsu, R. Xue, A. Holmes, J. R. Forder, “Delayed reduction of tissue water diffusion after myocardial ischemia”, Am. J. Physiol., 275 (1998), H697-H702

[24] N. Beyhoff, D. Lohr, A. Foryst-Ludwig, R. Klopfleisch, S. Brix, J. Grune, A. Thiele, L. Erfinanda, A. Tabuchi, W. M. Kuebler, B. Pieske, L. M. Schreiber, U. Kintscher, “Characterization of myocardial microstructure and function in an experimental model of isolated / subendocardial damage”, Hypertension, 74 (2019), 295–304 | DOI

[25] N. N. Yanenko, Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka. Sib. otd., Novosibirsk, 1967, 195 pp. | MR

[26] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byul. MGU., ser. Matematika i mekhanika, 1 (1937), 1–26

[27] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987, 480 pp.

[28] A. M. Turing, “The chemical basis of morphogenesis”, Phyl. Trans. Roy. Soc., 237 (1952), 37–72 | MR | Zbl