Proton reaction path in base pairs of DNA molecule according to the Complete Active Space Self-Consistent Field method
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The double proton transfer reaction paths in AT and CG base pairs of DNA molecule are calculated in the Complete Active Space Self-Consistent Field method and compared with the same paths in Density Functional Theory with B3LYP approximation approach. We found that an essential increase of an activation energy, which significantly reduces the probability of spontaneous mutations in DNA via double proton transfer. There exist two transition points on the singlet potential energy surface divided by a flat region for GC base pair. The applicability of various quantum-chemical methods for description of double proton transfer reactions was discussed.
@article{MBB_2023_18_1_a8,
     author = {K. V. Simon and A. V. Tulub},
     title = {Proton reaction path in base pairs of {DNA} molecule according to the {Complete} {Active} {Space} {Self-Consistent} {Field} method},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a8/}
}
TY  - JOUR
AU  - K. V. Simon
AU  - A. V. Tulub
TI  - Proton reaction path in base pairs of DNA molecule according to the Complete Active Space Self-Consistent Field method
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 33
EP  - 48
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a8/
LA  - en
ID  - MBB_2023_18_1_a8
ER  - 
%0 Journal Article
%A K. V. Simon
%A A. V. Tulub
%T Proton reaction path in base pairs of DNA molecule according to the Complete Active Space Self-Consistent Field method
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 33-48
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a8/
%G en
%F MBB_2023_18_1_a8
K. V. Simon; A. V. Tulub. Proton reaction path in base pairs of DNA molecule according to the Complete Active Space Self-Consistent Field method. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a8/

[1] Srivastava R., Front. Chem, 7 (2019), 536–517 | DOI

[2] L. Gorb, Y. Dziekonski P. Podolyan, W. A. Sokalski, Leszczynski J., J. Am. Chem. Soc., 126 (2004), 10119–10129 | DOI

[3] R. R.Q. Freitas, R. Rivelino, F. de B. Mota, G. K. Gueorguiev, de Castilho C. M.C., J. Phys. Chem., 119:27 (2015), 15735–15741

[4] A. Kumar, M. D. Sevilla, J. Phys. Chem. B, 113:33 (2009), 11359–11361 | DOI

[5] Zengtao Lv, Shouxin Cui, Feng Guo, Guiqing Zhang, AIP Advances, 9:1 (2019), 015015 | DOI

[6] T. Hayashi, S. Mukamel, Israel Journal of Chemistry, 44:1-3 (2004), 185–191 | DOI

[7] B. Bezbaruah, C. Medhi, Indian Journal of Advances in Chemical Science, 4:3 (2016), 314–320

[8] L. Slocombe, Al-Khalili J. S., Sacchi M., Phys. Chem. Chem. Phys, 23 (2021), 4141–4150 | DOI

[9] K. Umesaki, K. Odai, J. Phys. Chem. B, 124 (2020), 1715–1722

[10] L. Slocombe, M. Sacchi, J. Al-Khalili, Communications Physics, 5 (2022), 109–109 | DOI

[11] Tulub A. A., RSC Adv., 6:85 (2016), 81666–81671 | DOI

[12] A. C. Wahl, G. Das, “The Multiconfiguration Self-Consistent Field Method”, Methods of Electronic Structure Theory, Modern Theoretical Chemistr, 3, ed. Schaefer H.F., Springer, Boston, MA, 1977 | DOI

[13] B. O. Roos, “The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations”, Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry, 69, ed. Lawley K., 1987, 399–445 | DOI

[14] M. W. Schmidt, M. S. Gordon, Annu. Rev. Phys. Chem., 49 (1998), 233–266 | DOI

[15] G. M.J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez et al, J. Chem. Phys., 152:15 (2020), 154102–154126 | DOI

[16] B. M. Bode, Gordon M. S., J. Mol. Graphics and Modelling, 16:3 (1998), 133–138 | DOI