Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_1_a8, author = {K. V. Simon and A. V. Tulub}, title = {Proton reaction path in base pairs of {DNA} molecule according to the {Complete} {Active} {Space} {Self-Consistent} {Field} method}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {33--48}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a8/} }
TY - JOUR AU - K. V. Simon AU - A. V. Tulub TI - Proton reaction path in base pairs of DNA molecule according to the Complete Active Space Self-Consistent Field method JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 33 EP - 48 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a8/ LA - en ID - MBB_2023_18_1_a8 ER -
%0 Journal Article %A K. V. Simon %A A. V. Tulub %T Proton reaction path in base pairs of DNA molecule according to the Complete Active Space Self-Consistent Field method %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 33-48 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a8/ %G en %F MBB_2023_18_1_a8
K. V. Simon; A. V. Tulub. Proton reaction path in base pairs of DNA molecule according to the Complete Active Space Self-Consistent Field method. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a8/
[1] Srivastava R., Front. Chem, 7 (2019), 536–517 | DOI
[2] L. Gorb, Y. Dziekonski P. Podolyan, W. A. Sokalski, Leszczynski J., J. Am. Chem. Soc., 126 (2004), 10119–10129 | DOI
[3] R. R.Q. Freitas, R. Rivelino, F. de B. Mota, G. K. Gueorguiev, de Castilho C. M.C., J. Phys. Chem., 119:27 (2015), 15735–15741
[4] A. Kumar, M. D. Sevilla, J. Phys. Chem. B, 113:33 (2009), 11359–11361 | DOI
[5] Zengtao Lv, Shouxin Cui, Feng Guo, Guiqing Zhang, AIP Advances, 9:1 (2019), 015015 | DOI
[6] T. Hayashi, S. Mukamel, Israel Journal of Chemistry, 44:1-3 (2004), 185–191 | DOI
[7] B. Bezbaruah, C. Medhi, Indian Journal of Advances in Chemical Science, 4:3 (2016), 314–320
[8] L. Slocombe, Al-Khalili J. S., Sacchi M., Phys. Chem. Chem. Phys, 23 (2021), 4141–4150 | DOI
[9] K. Umesaki, K. Odai, J. Phys. Chem. B, 124 (2020), 1715–1722
[10] L. Slocombe, M. Sacchi, J. Al-Khalili, Communications Physics, 5 (2022), 109–109 | DOI
[11] Tulub A. A., RSC Adv., 6:85 (2016), 81666–81671 | DOI
[12] A. C. Wahl, G. Das, “The Multiconfiguration Self-Consistent Field Method”, Methods of Electronic Structure Theory, Modern Theoretical Chemistr, 3, ed. Schaefer H.F., Springer, Boston, MA, 1977 | DOI
[13] B. O. Roos, “The Complete Active Space Self-Consistent Field Method and its Applications in Electronic Structure Calculations”, Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry, 69, ed. Lawley K., 1987, 399–445 | DOI
[14] M. W. Schmidt, M. S. Gordon, Annu. Rev. Phys. Chem., 49 (1998), 233–266 | DOI
[15] G. M.J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez et al, J. Chem. Phys., 152:15 (2020), 154102–154126 | DOI
[16] B. M. Bode, Gordon M. S., J. Mol. Graphics and Modelling, 16:3 (1998), 133–138 | DOI