Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_1_a6, author = {Abhigyan Nath and Sudama Rathore and Pangambam Sendash Singh}, title = {Exploiting ensemble learning and negative sample space for predicting extracellular matrix receptor interactions}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {113--127}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a6/} }
TY - JOUR AU - Abhigyan Nath AU - Sudama Rathore AU - Pangambam Sendash Singh TI - Exploiting ensemble learning and negative sample space for predicting extracellular matrix receptor interactions JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 113 EP - 127 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a6/ LA - en ID - MBB_2023_18_1_a6 ER -
%0 Journal Article %A Abhigyan Nath %A Sudama Rathore %A Pangambam Sendash Singh %T Exploiting ensemble learning and negative sample space for predicting extracellular matrix receptor interactions %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 113-127 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a6/ %G en %F MBB_2023_18_1_a6
Abhigyan Nath; Sudama Rathore; Pangambam Sendash Singh. Exploiting ensemble learning and negative sample space for predicting extracellular matrix receptor interactions. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 113-127. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a6/
[1] D. Gullberg, P. Heldin, S. Liliana, T. Ruggero, T. Achilleas, W. Jan-Olof, Extracellular matrix: pathobiology and signaling, Walter de Gruyter, 2012
[2] D. Manou, I. Caon, P. Bouris, I. E. Triantaphyllidou, C. Giaroni, A. Passi, N. K. Karamanos, D. Vigetti, A. D. Theocharis, The Complex Interplay Between Extracellular Matrix and Cells in Tissues, 2019, 20 pp.
[3] R. Jinka, R. Kapoor, P. G. Sistla, T. A. Raj, G. Pande, “Alterations in Cell-Extracellular Matrix Interactions during Progression of Cancers”, International Journal of Cell Biology, 2012 (2012), 1–8 | DOI
[4] F. T. Bosman, I. Stamenkovic, “Functional structure and composition of the extracellular matrix”, The Journal of Pathology, 200:4 (2003), 423–428 | DOI
[5] S. H. Kim, J. Turnbull, S. Guimond, “Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor”, Journal of Endocrinology, 209:2 (2011), 139–151 | DOI
[6] A. van der Flier, A. Sonnenberg, “Function and interactions of integrins”, Cell and Tissue Research, 305:3 (2001), 285–298 | DOI
[7] G. David, V. Lories, B. Decock, P. Marynen, J. J. Cassiman, H. Van den Berghe, “Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts”, Journal of Cell Biology, 111:6 (1990), 3165–3176 | DOI
[8] C. S. Stipp, E. D. Litwack, A. D. Lander, “Cerebroglycan: an integral membrane heparan sulfate proteoglycan that is unique to the developing nervous system and expressed specifically during neuronal differentiation”, Journal of Cell Biology, 124:1 (1994), 149–160 | DOI
[9] K. Elenius, M. Jalkanen, “Function of the syndecans a family of cell surface proteoglycans”, Journal of Cell Science, 107:11 (1994), 2975–2982 | DOI
[10] Shi Yan, Yunpeng Zhang, Dai-Feng Lu, Feng Dong, Yongyun Lian, ECM-receptor interaction as a prognostic indicator for clinical outcome of primary osteoporosis, 2016
[11] P. Buttner, L. Ueberham, M. B. Shoemaker, D. M. Roden, B. Dinov, G. Hindricks, A. Bollmann, D. Husser, “Identification of Central Regulators of Calcium Signaling and ECM-Receptor Interaction Genetically Associated With the Progression and Recurrence of Atrial Fibrillation”, Frontiers in Genetics, 9 (2018) | DOI
[12] N. K. Karamanos, “Extracellular matrix: key structural and functional meshwork in health and disease”, The FEBS Journal, 286:15 (2019), 2826–2829 | DOI
[13] E. Mavrogonatou, H. Pratsinis, A. Papadopoulou, N. K. Karamanos, D. Kletsas, “Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis”, Matrix Biology, 75-76 (2019), 27–42 | DOI
[14] A. D. Theocharis, D. Manou, N. K. Karamanos, “The extracellular matrix as a multitasking player in disease”, The FEBS Journal, 286:15 (2019), 2830–2869 | DOI
[15] M. Urbanczyk, S. L. Layland, K. Schenke-Layland, “The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues”, Matrix Biology, 85-86 (2020), 1–14 | DOI
[16] S. M. Pupa, S. Menard, S. Forti, E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression”, Journal of Cellular Physiology, 192:3 (2002), 259–267 | DOI
[17] J. Jung, T. Ryu, Y. Hwang, E. Lee, D. Lee, “Prediction of Extracellular Matrix Proteins Based on Distinctive Sequence and Domain Characteristics”, Journal of Computational Biology, 17:1 (2010), 97–105 | DOI
[18] E. Hanna, J. Quick, S. K. Libutti, “The tumour microenvironment: a novel target for cancer therapy”, Oral Diseases, 15:1 (2009), 8–17 | DOI
[19] J. S. Desgrosellier, D. A. Cheresh, “Integrins in cancer: biological implications and therapeutic opportunities”, Nature Reviews Cancer, 10:1 (2010), 9–22 | DOI
[20] G. Launay, R. Salza, D. Multedo, N. Thierry-Mieg, Ricard-Blum S., “MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities”, Nucleic Acids Research, 43:D1 (2015), D321-D327 | DOI
[21] A. Nath, A. Leier, “Improved cytokine-receptor interaction prediction by exploiting the negative sample space”, BMC Bioinformatics, 21:1 (2020), 493 | DOI
[22] M. Kanehisa, “KEGG: Kyoto Encyclopedia of Genes and Genomes”, Nucleic Acids Research, 28:1 (2000), 27–30 | DOI
[23] S. Roy, D. Martinez, H. Platero, T. Lane, M. Werner-Washburne, “Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions”, PLoS ONE, 4:11 (2009) | DOI
[24] A. Nath, R. Chaube, K. Subbiah, “An insight into the molecular basis for convergent evolution in fish antifreeze Proteins”, Computers in Biology and Medicine, 43:7 (2013), 817–821 | DOI
[25] A. Nath, “Insights into the sequence parameters for halophilic adaptation”, Amino Acids, 48:3 (2016), 751–762 | DOI
[26] A. Nath, K. Subbiah, “The role of pertinently diversified and balanced training as well as testing data sets in achieving the true performance of classifiers in predicting the antifreeze proteins”, Neurocomputing, 272 (2018), 294–305 | DOI
[27] W. R. Atchley, J. Zhao, A. D. Fernandes, T. Druke, “Solving the protein sequence metric problem”, Proceedings of the National Academy of Sciences, 102:18 (2005), 6395–6400 | DOI
[28] Z. Chen, P. Zhao, F. Li, A. Leier, T. T. Marquez-Lago, Y. Wang, G. I. Webb, A. I. Smith, R. J. Daly, K. C. Chou, J. Song, “iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences”, Bioinformatics, 34:14 (2018), 2499–2502 | DOI
[29] J. Wang, B. Yang, J. Revote, A. Leier, T. T. Marquez-Lago, G. Webb, J. Song, K. C. Chou, T. Lithgow, “POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles”, Bioinformatics, 33:17 (2017), 2756–2758 | DOI
[30] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, “Basic local alignment search tool”, Journal of Molecular Biology, 215:3 (1990), 403–410 | DOI
[31] R. Polikar, “Ensemble based systems in decision making”, IEEE Circuits and Systems Magazine, 6:3 (2006), 21–45 | DOI
[32] Y. Freund, R. E. Schapire, “Experiments with a New Boosting Algorithm”, In proceedings of the thirteenth International Conference on Machine Learning, Morgan Kaufmann, 1996, 148–156
[33] R. E. Schapire, The Boosting Approach to Machine Learning: An Overview, 2003, 149–171 | MR | Zbl
[34] Breiman L., “Bagging predictors”, Machine Learning, 24:2 (1996), 123–140 | Zbl
[35] Breiman L., “Random Forests”, Machine Learning, 45:1 (2001), 5–32 | DOI | MR | Zbl
[36] A. Nath, K. Subbiah, “Maximizing lipocalin prediction through balanced and diversified training set and decision fusion”, Computational Biology and Chemistry, 59 (2015), 101–110 | DOI
[37] P. J. de Groot, G. J. Postma, W. J. Melssen, L. M.C. Buydens, “Selecting a representative training set for the classification of demolition waste using remote NIR sensing”, Analytica Chimica Acta, 392:1 (1999), 67–75 | DOI
[38] D. C. Li, S. C. Hu, L. S. Lin, C. W. Yeh, “Detecting representative data and generating synthetic samples to improve learning accuracy with imbalanced data sets”, PLoS ONE, 12:8 (2017)
[39] A. K. Jain, M. N. Murty, Flynn P. J., “Data clustering”, ACM Computing Surveys, 31:3 (1999), 264–323 | DOI
[40] D. T. Larose, C. D. Larose, Discovering Knowledge in Data, John Wiley and Sons, Inc, Hoboken, NJ, USA, 2014 | MR
[41] M. Daszykowski, B. Walczak, D. L. Massart, “Representative subset selection”, Analytica Chimica Acta, 468:1 (2002), 91–103 | DOI
[42] K. Kira, L. A. Rendell, “A Practical Approach to Feature Selection”, Proceedings of the Ninth International Workshop on Machine Learning, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 1992, 249–256
[43] R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, J. H. Moore, “Relief-based feature selection: Introduction and review”, Journal of Biomedical Informatics, 85 (2018), 189–203 | DOI
[44] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, “The WEKA data mining software: an update”, ACM SIGKDD Explorations Newsletter, 11:1 (2009), 10–18 | DOI
[45] C. X. Ling, J. Huang, H. Zhang, “AUC: A Better Measure than Accuracy in Comparing Learning Algorithms”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2671, 2003, 329–341 | MR
[46] H. Jin, C. X. Ling, “Using AUC and accuracy in evaluating learning algorithms”, IEEE Transactions on Knowledge and Data Engineering, 17:3 (2005), 299–310 | DOI
[47] Y. Murakami, K. Mizuguchi, “PSOPIA: Toward more reliable protein-protein interaction prediction from sequence information”, 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), IEEE, 2017, 255–261
[48] V. Perovic, N. Sumonja, B. Gemovic, E. Toska, S. G. Roberts, N. Veljkovic, “TRI_tool: a web-tool for prediction of protein-protein interactions in human transcriptional regulation”, Bioinformatics, 33:2 (2017), 289–291 | DOI
[49] J. Planas-Iglesias, M. A. Marin-Lopez, J. Bonet, J. Garcia-Garcia, B. Oliva, “iLoops: a protein-protein interaction prediction server based on structural features”, Bioinformatics, 29:18 (2013), 2360–2362 | DOI
[50] Wolpert D., Macready W., “No free lunch theorems for optimization”, IEEE Transactions On Evolutionary Computation, 1 (1997), 67–82 | DOI
[51] Murphy K., Naive bayes classifiers, Preprint No 18, University Of British Columbia, 2006, 8 pp.
[52] Breiman L., “Random forests”, Machine Learning, 45 (2001), 5–32 | DOI | MR | Zbl
[53] Breiman L., “Bagging predictors”, Machine Learning, 24 (1996), 123–140 | Zbl
[54] Peterson L., “K-nearest neighbor”, Scholarpedia, 4 (2009), 1883 | DOI
[55] C. Cortes, V. Vapnik, “Support-vector networks”, Machine Learning, 20 (1995), 273–297 | Zbl
[56] J. Platt, Sequential minimal optimization: A fast algorithm for training support vector machines, Technical Report No. msr-tr-98-14, Microsoft Research, 1998
[57] S. Keerthi, S. Shevade, C. Bhattacharyya, K. Murthy, “Improvements to Platt's SMO algorithm for SVM classifier design”, Neural Computation, 13 (2001), 637–649 | DOI | Zbl
[58] J. Rodriguez, L. Kuncheva, C. Alonso, “Rotation forest: A new classifier ensemble method”, IEEE Transactions On Pattern Analysis And Machine Intelligence, 28 (2006), 1619–1630 | DOI