Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_1_a5, author = {Navaneetha Nambigari}, title = {Cancer therapeutics: structure-based drug design of inhibitors for a novel angiogenic growth factor}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {72--88}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a5/} }
TY - JOUR AU - Navaneetha Nambigari TI - Cancer therapeutics: structure-based drug design of inhibitors for a novel angiogenic growth factor JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 72 EP - 88 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a5/ LA - en ID - MBB_2023_18_1_a5 ER -
%0 Journal Article %A Navaneetha Nambigari %T Cancer therapeutics: structure-based drug design of inhibitors for a novel angiogenic growth factor %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 72-88 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a5/ %G en %F MBB_2023_18_1_a5
Navaneetha Nambigari. Cancer therapeutics: structure-based drug design of inhibitors for a novel angiogenic growth factor. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 72-88. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a5/
[1] A. L. Harris, “Angiogenesis as a New Target for Cancer Control”, Eur. J. Cancer, 1:2, Suppl (2003), 1–12 | DOI
[2] N. Gavalas, M. Liontos, S. P. Trachana, T. Bagratuni, C. Arapinis, C. Liacos, M. Dimopoulos, A. Bamias, “Angiogenesis-Related Pathways in the Pathogenesis of Ovarian Cancer”, Int. J. Mol. Sci, 14:8 (2013), 15885–15909 | DOI | MR
[3] G. Bergers, D. Hanahan, “Modes of Resistance to Anti-Angiogenic Therapy”, Nat. Rev. Cancer, 8:8 (2008), 592–603 | DOI
[4] K. H. Plate, BreierG, C. L. Farrell, W. Risau, “Platelet-Derived Growth Factor Receptor Beta Is Induced Duringtumor Development and Upregulated during Tumor Progressionin Endothelial Cells in Human Gliomas”, Lab. Invest, 67 (1992), 529–534
[5] J. H. Yu, C. Ustach, H. R. ChoiKim, “Platelet-Derived Growth Factor Signaling and Human Cancer”, BMB Rep, 36:1 (2003), 49–59 | DOI
[6] C. Anderberg, H. Li, L. Fredriksson, J. Andrae, C. Betsholtz, X. Li, U. Eriksson, K. Pietras, “Paracrine Signaling by Platelet-Derived Growth Factor-CC Promotes Tumor Growth by Recruitment of Cancer-Associated Fibroblasts”, Cancer Res, 69:1 (2009), 369–378 | DOI
[7] Y. Crawford, I. Kasman, L. Yu, C. Zhong, X. Wu, Z. Modrusan, J. Kaminker, N. Ferrara, “PDGF-C Mediates the Angiogenic and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment”, Cancer Cell, 15:1 (2009), 21–34 | DOI
[8] L. J. Reigstad, Varhaug J. E.; Lillehaug, J. R., “Structural and Functional Specificities of PDGF-C and PDGF-D, the Novel Members of the Platelet-Derived Growth Factors Family”, FEBS J., 272:22 (2005), 5723–5741 | DOI
[9] D. Wagsater, C. Zhu, H. M. Bjorck, P. Eriksson, “Effects of PDGF-C and PDGF-D on Monocyte Migration and MMP-2 and MMP-9 Expression”, Atherosclerosis, 202:2 (2009), 415–423 | DOI
[10] X. Li, A. Kumar, ZhangF, C. Lee, Y. Tang Z. Li, P. Arjunan, “VEGF-Independent Angiogenic Pathways Induced by PDGF-C”, Oncotarget, 1:4 (2010), 309–314 | DOI
[11] W. Risau, H. Drexler, V. Mironov, A. Smits, A. Siegbahn, K. Funa, C. H. Heldin, “Platelet-Derived Growth Factor Is Angiogenic In Vivo”, Growth Factors, 7:4 (1992), 261–266 | DOI
[12] J. P. Zwerner, W. A. May, “Dominant Negative PDGF-C Inhibits Growth of Ewing Family Tumor Cell Lines”, Oncogene, 21:24 (2002), 3847–3854 | DOI
[13] Zwerner J.P, . May W. A., “PDGF-C Is an EWS/FLI Induced Transforming Growth Factor in Ewing Family Tumors”, Oncogene, 20:5 (2001), 626–633 | DOI
[14] D. G. Gilbertson, M. E. Duff, J. W. West, J. D. Kelly, P. O. Sheppard, P. D. Hofstrand, Z. Gao, K. Shoemaker, T. R. Bukowski, M. Moore, A. L. Feldhaus, J. M. Palmer T. E. Humes, C. E. Hart, “Platelet-Derived Growth Factor C (PDGF-C), a Novel Growth Factor That Binds to PDGF $\alpha$ and $\beta$ Receptor”, J. Biol. Chem, 276:29 (2001), 27406–27414 | DOI
[15] X. Li, A. Ponten, K. Aase, L. Abramsson A. Karlsson, M. Uutela, G. Backstrom, M. Hellstrom, H. Bostrom, H. Li, P. Soriano, C. Betsholtz, C. H. Heldin, K. Alitalo, A. Eriksson U. Ostman, “PDGF-C Is a New Protease-Activated Ligand for the PDGF Receptor”, Nat. Cell Biol, 2:5 (2000), 302–309 | DOI
[16] M. Raica, A. M. Cimpean, “Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy”, Pharmaceuticals, 3:3 (2010), 572–599 | DOI
[17] C. Chothia, A. M. Lesk, “The Relation between the Divergence of Sequence and Structure in Proteins”, EMBO J., 5:4 (1986), 823–826 | DOI
[18] M. A. Marti-Renom, A. C. Stuart, A. Fiser, R. Sanchez, F. Melo, A. Sali, “Comparative Protein Structure Modeling of Genes and Genomes”, Annu. Rev. Biophys. Biomol. Struct., 29:1 (2000), 291–325 | DOI
[19] S. Altschul, “Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs”, Nucleic Acids Res, 25:17 (1997), 3389–3402 | DOI
[20] Cole C, . Barber J. D., G. J. Barton, “The Jpred 3 Secondary Structure Prediction Server”, Nucleic Acids Res., 36 (2008), W197–W201 | DOI
[21] B. Contreras-Moreira, P. A. Bates, “Domain Fishing: A First Step in Protein Comparative Modelling”, Bioinformatics, 18:8 (2002), 1141–1142 | DOI
[22] H. M. Berman, “The Protein Data Bank”, Nucleic Acids Res, 28:1 (2000), 235–242 | DOI
[23] G. H. Gonnet, M. A. Cohen, S. A. Benner, “Exhaustive Matching of the Entire Protein Sequence Database”, Science, 256:5062 (1992), 1443–1445 | DOI
[24] J. D. Thompson, D. G. Higgins, T. J. Gibson, “CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position Specific Gap Penalties and Weight Matrix Choice”, Nucleic Acids Res., 22:22 (1994), 4673–4680 | DOI
[25] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, D. G. Higgins, “Clustal W and Clustal X Version 2.0”, Bioinformatics, 23:21 (2007), 2947–2948 | DOI
[26] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. K.M. Swaminathan, “CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations”, J. Comput. Chem., 4 (1983), 187–217 | DOI
[27] A. Sali, L. Potterton, F. Yuan, H. van Vlijmen, M. Karplus, “Evaluation of Comparative Protein Modeling by MODELLER”, Proteins Struct. Funct. Genet, 23:3 (1995), 318–326 | DOI
[28] A. Sali, T. L. Blundell, “Comparative Protein Modelling by Satisfaction of Spatial Restraints”, J. Mol. Biol, 234:3 (1993), 779–815 | DOI
[29] N. Guex, M. C. Peitsch, “SWISS-MODEL and the Swiss-Pdb Viewer: An Environment for Comparative Protein Modeling”, Electrophoresis, 18:15 (1997), 2714–2723 | DOI
[30] A. Fiser, R. K.G. Do, A. Sali, “Modeling of Loops in Protein Structures”, Protein Sci., 9:9 (2000), 1753–1773 | DOI
[31] W. L. Jorgensen, J. Tirado-Rives, “The OPLS [Optimized Potentials for Liquid Simulations] Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin”, J. Am. Chem. Soc., 110:6 (1988), 1657–1666 | DOI
[32] W. L. Maxwell D. S. Jorgensen, J. Tirado-Rives, “Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids”, J. Am. Chem. Soc., 118:45 (1996), 11225–11236 | DOI
[33] R. A. Laskowski, M. W. MacArthur, D. S. Thornton, J. M. Moss, “PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures”, J. Appl. Crystallogr, 26:2 (1993), 283–291 | DOI
[34] G. N. Ramachandran, C. Sasisekharan V. Ramakrishnan, “Stereochemistry of Polypeptide Chain Configurations”, J. Mol. Biol., 7:1 (1963), 95–99 | DOI
[35] M. Wiederstein, M. J. Sippl, “ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins”, Nucleic Acids Res., 35 (2007), W407–W410 | DOI
[36] A. T. Laurie, “Methods for the Prediction of Protein-Ligand Binding Sites for Structure Based Drug Design and Virtual Ligand Screening”, Curr. Protein Pept. Sci., 7 (2006), 395–406 | DOI
[37] J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz, J. Liang, “CASTp: Computed Atlas of Surface Topography of Proteins with Structural and Topographical Mapping of Functionally Annotated Residues”, Nucleic Acids Res., 34 (2006), W116–W118 | DOI
[38] A. T.R. Laurie, R. M. Jackson, “Q-SiteFinder: An Energy-Based Method for the Prediction of Protein-Ligand Binding Sites”, Bioinformatics, 21:9 (2005), 1908–1916 | DOI
[39] T. A. Halgren, “Identifying and Characterizing Binding Sites and Assessing Druggability”, J. Chem. Inf. Model, 49:2 (2009), 377–389 | DOI
[40] L. Goverdhan, B. Revanth, D. Mahendar, B. Manan, P. Sarita Rajender, “Identification and optimisation of novel selective inhibitors against human regulator of G protein signalling 2 (RGS2) protein for type 2 diabetes mellitus: an in silico approach”, Int. J. Comput. Biol. Drug Des, 14:3 (2021), 166–189 | DOI
[41] N. Navaneetha, M. Kiran Kumar, M. Vasavi, K. Bhargavi, P. Sarita Rajender, D. Ramasree, V. Uma, “Angiogenesis: An Insilico Approach to Angiogenic Phenotype”, J. Pharm. Res., 5:1 (2012), 583–588
[42] D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H. J. Wolfson, “PatchDock and SymmDock: Servers for Rigid and Symmetric Docking”, Nucleic Acids Res., 33 (2005), W363–W367 | DOI
[43] Accelrys Discovery Studio Visualiser v 3.5.0.12158, Accelrys Software Inc., San Diego, 2012
[44] S. Ghosh, A. Nie, J. An, Z. Huang, “Structure-Based Virtual Screening of Chemical Libraries for Drug Discovery”, Curr. Opin. Chem. Biol., 10:3 (2006), 194–202 | DOI
[45] G. Klebe, “Virtual Ligand Screening: Strategies, Perspectives and Limitations”, Drug Discov. Today, 11:13-14 (2006), 580–594 | DOI
[46] T. Lengauer, M. Rarey, “Computational Methods for Biomolecular Docking”, Curr. Opin. Struct. Biol, 6:3 (1996), 402–406 | DOI
[47] G. Lanka, R. Bathula, M. Bhargavi, S. R. Potlapall, “Homology modeling and molecular docking studies for the identification of novel potential therapeutics against human PHD3 as a drug target for type 2 diabetes mellitus”, Journal of Drug Delivery and Therapeutics, 9:4 (2019), 265–273 | MR
[48] R. A. Banks J. L. Murphy R. B. Friesner, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry et al, “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy”, J. Med. Chem., 47:7 (2004), 1739–1749 | DOI
[49] S. Kawatkar, H. Wang, R. Czerminski, D. Joseph-McCarthy, “Virtual Fragment Screening: An Exploration of Various Docking and Scoring Protocols for Fragments Using Glide”, J. Comput. Aided. Mol. Des, 23:8 (2009), 527–539 | DOI
[50] M. Podvinec, S. P. Lim, T. Schmidt, M. Scarsi, D. Wen, L. S. Sonntag, P. Sanschagrin, P. S. Shenkin, T. Schwede, “Novel Inhibitors of Dengue Virus Methyltransferase: Discovery by in Vitro-Driven Virtual Screening on a Desktop Computer Grid”, J. Med. Chem., 53:4 (2010), 1483–1495 | DOI
[51] LigPrep, Version 3.3, Schrodinger, LLC, New York, NY, 2010
[52] GLIDE, Version 5.6, Schrodinger, LLC, New York, NY, 2010
[53] R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, D. T. Mainz, “Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein?Ligand Complexes”, J. Med. Chem., 49:21 (2006), 6177–6196 | DOI
[54] A. D. Rodrigues, “Preclinical Drug Metabolism in the Age of High-Throughput Screening: An Industrial Perspec”, Pharm. Res., 14:11 (1997), 1504–1510 | DOI
[55] A. Daina, V. Zoete, “A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules”, Chem. Med. Chem., 11:11 (2016), 1117–1121 | DOI
[56] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T. L. Madden, “NCBI BLAST: A Better Web Interface”, Nucleic Acids Res., 36 (2008), W5–W9 | DOI
[57] S. Karlin, S. F. Altschul, “Methods for Assessing the Statistical Significance of Molecular Sequence Features by Using General Scoring Schemes”, Proc. Natl. Acad. Sci., 87:6 (1990), 2264–2268 | DOI | Zbl
[58] A. Drozdetskiy, C. Cole, J. Procter, G. J. Barton, “JPred4: A Protein Secondary Structure Prediction Server”, Nucleic Acids Res., 43:W1 (2015), W389–W394 | DOI
[59] C. A. Kerfeld, K. M. Scott, “Using BLAST to Teach “E-Value-Tionary” Concepts”, PLoS Biol., 9:2 (2011), e1001014 | DOI
[60] M. Wiederstein, M. J. Sippl, “ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins”, Nucleic Acids Res., 35 (2007), W407–W410 | DOI
[61] G. Bergers, S. Song, N. Meyer-Morse, E. Bergsland, D. Hanahan, “Benefits of Targeting Both Pericytes and Endothelial Cells in the Tumor Vasculature with Kinase Inhibitors”, J. Clin. Invest., 111:9 (2003), 1287–1295 | DOI
[62] A. Ostman, “PDGF Receptors-Mediators of Autocrine Tumor Growth and Regulators of Tumor Vasculature and Stroma”, Cytokine Growth Factor Rev., 15:4 (2004), 275–286 | DOI | MR
[63] R. Erber, A. Thurnher, A. D. Katsen, G. Groth, H. Kerger, H. Hammes, M. D. Menger, A. Ullrich, P. Vajkoczy, “Combined Inhibition of VEGF- and PDGF-signaling Enforces Tumor Vessel Regression by Interfering with Pericyte-mediated Endothelial Cell Survival Mechanisms”, FASEB J., 18:2 (2004), 338–340 | DOI
[64] J. Andrae, R. Gallini, C. Betsholtz, “Role of Platelet-Derived Growth Factors in Physiology and Medicine”, Genes Dev., 22:10 (2008), 1276–1312 | DOI
[65] L. Fredriksson, H. Li, C. Fieber, X. Li, U. Eriksson, “Tissue Plasminogen Activator Is a Potent Activator of PDGF-CC”, EMBO J., 23:19 (2004), 3793–3802 | DOI
[66] T. J. Ritchie, P. Ertl, R. Lewis, “The Graphical Representation of ADME-Related Molecule Properties for Medicinal Chemists”, Drug Discov. Today, 16:1–2 (2011), 65–72 | DOI
[67] A. Breier, L. Gibalova, M. Seres, M. Barancik, Z. Sulova, “New Insight into P Glycoprotein as a Drug Target”, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry Anti-Cancer Agents), 13:1 (2013), 159–170 | DOI
[68] S. J. Park, H. Baars, S. Mersmann, H. Buschmann, J. M. Baron, P. M. Amann, K. Czaja, H. Hollert, K. Bluhm, R. Redelstein, C. Bolm, “NCyano Sulfoximines: COX Inhibition, Anticancer Activity, Cellular Toxicity, and Mutagenicity”, Chem. Med. Chem., 8:2 (2013), 217–220 | DOI