Cancer therapeutics: structure-based drug design of inhibitors for a novel angiogenic growth factor
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 72-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Angiogenesis, the formation of new blood vessels, is a critical and rate-limiting tumor growth step controlled by pro-angiogenic factors and specific inhibitors. Tumor angiogenesis is essential for cancer progression and metastasis. Platelet growth factors (PDGF) and their receptors (PDGFR) are associated with tumor angiogenesis through overexpression of PDGF. Inhibition of PDGF and its signaling pathway is a new approach to the discovery of anticancer therapeutic agents. The present study focuses on the PDGF-C protein in the identification of novel anti-angiogenic compounds. MODELLER 9.10 software allows users to create and refine a 3D homology model of the PDGF-C protein (345 AA length). Secondary structure analysis of the 3D energy model reveals 16 $\beta$ sheets held together by four cation-$\pi$ and one $\pi$$\sigma$ interactions, and three salt bridges. The quality of the model is assessed using the Ramachandran plot (90 percent amino acids in the favorable region) and the ProSA server ($Z$-score = -2.28). Active site residues are identified using Castp, QSite search engine, site map, and protein docking of the protein to its receptor. In addition, virtual screening is performed at the active site using the Glide module of the Schrodinger Suite. Glide score, glide energy and ADME are being measured to discover new benefits of pyrazolone and pyrrolidine-2,3-dione scaffolds as potent PDGF-C antagonists for anti-angiogenic cancer chemotherapy drugs.
@article{MBB_2023_18_1_a5,
     author = {Navaneetha Nambigari},
     title = {Cancer therapeutics: structure-based drug design of inhibitors for a novel angiogenic growth factor},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {72--88},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a5/}
}
TY  - JOUR
AU  - Navaneetha Nambigari
TI  - Cancer therapeutics: structure-based drug design of inhibitors for a novel angiogenic growth factor
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 72
EP  - 88
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a5/
LA  - en
ID  - MBB_2023_18_1_a5
ER  - 
%0 Journal Article
%A Navaneetha Nambigari
%T Cancer therapeutics: structure-based drug design of inhibitors for a novel angiogenic growth factor
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 72-88
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a5/
%G en
%F MBB_2023_18_1_a5
Navaneetha Nambigari. Cancer therapeutics: structure-based drug design of inhibitors for a novel angiogenic growth factor. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 72-88. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a5/

[1] A. L. Harris, “Angiogenesis as a New Target for Cancer Control”, Eur. J. Cancer, 1:2, Suppl (2003), 1–12 | DOI

[2] N. Gavalas, M. Liontos, S. P. Trachana, T. Bagratuni, C. Arapinis, C. Liacos, M. Dimopoulos, A. Bamias, “Angiogenesis-Related Pathways in the Pathogenesis of Ovarian Cancer”, Int. J. Mol. Sci, 14:8 (2013), 15885–15909 | DOI | MR

[3] G. Bergers, D. Hanahan, “Modes of Resistance to Anti-Angiogenic Therapy”, Nat. Rev. Cancer, 8:8 (2008), 592–603 | DOI

[4] K. H. Plate, BreierG, C. L. Farrell, W. Risau, “Platelet-Derived Growth Factor Receptor Beta Is Induced Duringtumor Development and Upregulated during Tumor Progressionin Endothelial Cells in Human Gliomas”, Lab. Invest, 67 (1992), 529–534

[5] J. H. Yu, C. Ustach, H. R. ChoiKim, “Platelet-Derived Growth Factor Signaling and Human Cancer”, BMB Rep, 36:1 (2003), 49–59 | DOI

[6] C. Anderberg, H. Li, L. Fredriksson, J. Andrae, C. Betsholtz, X. Li, U. Eriksson, K. Pietras, “Paracrine Signaling by Platelet-Derived Growth Factor-CC Promotes Tumor Growth by Recruitment of Cancer-Associated Fibroblasts”, Cancer Res, 69:1 (2009), 369–378 | DOI

[7] Y. Crawford, I. Kasman, L. Yu, C. Zhong, X. Wu, Z. Modrusan, J. Kaminker, N. Ferrara, “PDGF-C Mediates the Angiogenic and Tumorigenic Properties of Fibroblasts Associated with Tumors Refractory to Anti-VEGF Treatment”, Cancer Cell, 15:1 (2009), 21–34 | DOI

[8] L. J. Reigstad, Varhaug J. E.; Lillehaug, J. R., “Structural and Functional Specificities of PDGF-C and PDGF-D, the Novel Members of the Platelet-Derived Growth Factors Family”, FEBS J., 272:22 (2005), 5723–5741 | DOI

[9] D. Wagsater, C. Zhu, H. M. Bjorck, P. Eriksson, “Effects of PDGF-C and PDGF-D on Monocyte Migration and MMP-2 and MMP-9 Expression”, Atherosclerosis, 202:2 (2009), 415–423 | DOI

[10] X. Li, A. Kumar, ZhangF, C. Lee, Y. Tang Z. Li, P. Arjunan, “VEGF-Independent Angiogenic Pathways Induced by PDGF-C”, Oncotarget, 1:4 (2010), 309–314 | DOI

[11] W. Risau, H. Drexler, V. Mironov, A. Smits, A. Siegbahn, K. Funa, C. H. Heldin, “Platelet-Derived Growth Factor Is Angiogenic In Vivo”, Growth Factors, 7:4 (1992), 261–266 | DOI

[12] J. P. Zwerner, W. A. May, “Dominant Negative PDGF-C Inhibits Growth of Ewing Family Tumor Cell Lines”, Oncogene, 21:24 (2002), 3847–3854 | DOI

[13] Zwerner J.P, . May W. A., “PDGF-C Is an EWS/FLI Induced Transforming Growth Factor in Ewing Family Tumors”, Oncogene, 20:5 (2001), 626–633 | DOI

[14] D. G. Gilbertson, M. E. Duff, J. W. West, J. D. Kelly, P. O. Sheppard, P. D. Hofstrand, Z. Gao, K. Shoemaker, T. R. Bukowski, M. Moore, A. L. Feldhaus, J. M. Palmer T. E. Humes, C. E. Hart, “Platelet-Derived Growth Factor C (PDGF-C), a Novel Growth Factor That Binds to PDGF $\alpha$ and $\beta$ Receptor”, J. Biol. Chem, 276:29 (2001), 27406–27414 | DOI

[15] X. Li, A. Ponten, K. Aase, L. Abramsson A. Karlsson, M. Uutela, G. Backstrom, M. Hellstrom, H. Bostrom, H. Li, P. Soriano, C. Betsholtz, C. H. Heldin, K. Alitalo, A. Eriksson U. Ostman, “PDGF-C Is a New Protease-Activated Ligand for the PDGF Receptor”, Nat. Cell Biol, 2:5 (2000), 302–309 | DOI

[16] M. Raica, A. M. Cimpean, “Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy”, Pharmaceuticals, 3:3 (2010), 572–599 | DOI

[17] C. Chothia, A. M. Lesk, “The Relation between the Divergence of Sequence and Structure in Proteins”, EMBO J., 5:4 (1986), 823–826 | DOI

[18] M. A. Marti-Renom, A. C. Stuart, A. Fiser, R. Sanchez, F. Melo, A. Sali, “Comparative Protein Structure Modeling of Genes and Genomes”, Annu. Rev. Biophys. Biomol. Struct., 29:1 (2000), 291–325 | DOI

[19] S. Altschul, “Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs”, Nucleic Acids Res, 25:17 (1997), 3389–3402 | DOI

[20] Cole C, . Barber J. D., G. J. Barton, “The Jpred 3 Secondary Structure Prediction Server”, Nucleic Acids Res., 36 (2008), W197–W201 | DOI

[21] B. Contreras-Moreira, P. A. Bates, “Domain Fishing: A First Step in Protein Comparative Modelling”, Bioinformatics, 18:8 (2002), 1141–1142 | DOI

[22] H. M. Berman, “The Protein Data Bank”, Nucleic Acids Res, 28:1 (2000), 235–242 | DOI

[23] G. H. Gonnet, M. A. Cohen, S. A. Benner, “Exhaustive Matching of the Entire Protein Sequence Database”, Science, 256:5062 (1992), 1443–1445 | DOI

[24] J. D. Thompson, D. G. Higgins, T. J. Gibson, “CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position Specific Gap Penalties and Weight Matrix Choice”, Nucleic Acids Res., 22:22 (1994), 4673–4680 | DOI

[25] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, D. G. Higgins, “Clustal W and Clustal X Version 2.0”, Bioinformatics, 23:21 (2007), 2947–2948 | DOI

[26] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. K.M. Swaminathan, “CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations”, J. Comput. Chem., 4 (1983), 187–217 | DOI

[27] A. Sali, L. Potterton, F. Yuan, H. van Vlijmen, M. Karplus, “Evaluation of Comparative Protein Modeling by MODELLER”, Proteins Struct. Funct. Genet, 23:3 (1995), 318–326 | DOI

[28] A. Sali, T. L. Blundell, “Comparative Protein Modelling by Satisfaction of Spatial Restraints”, J. Mol. Biol, 234:3 (1993), 779–815 | DOI

[29] N. Guex, M. C. Peitsch, “SWISS-MODEL and the Swiss-Pdb Viewer: An Environment for Comparative Protein Modeling”, Electrophoresis, 18:15 (1997), 2714–2723 | DOI

[30] A. Fiser, R. K.G. Do, A. Sali, “Modeling of Loops in Protein Structures”, Protein Sci., 9:9 (2000), 1753–1773 | DOI

[31] W. L. Jorgensen, J. Tirado-Rives, “The OPLS [Optimized Potentials for Liquid Simulations] Potential Functions for Proteins, Energy Minimizations for Crystals of Cyclic Peptides and Crambin”, J. Am. Chem. Soc., 110:6 (1988), 1657–1666 | DOI

[32] W. L. Maxwell D. S. Jorgensen, J. Tirado-Rives, “Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids”, J. Am. Chem. Soc., 118:45 (1996), 11225–11236 | DOI

[33] R. A. Laskowski, M. W. MacArthur, D. S. Thornton, J. M. Moss, “PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures”, J. Appl. Crystallogr, 26:2 (1993), 283–291 | DOI

[34] G. N. Ramachandran, C. Sasisekharan V. Ramakrishnan, “Stereochemistry of Polypeptide Chain Configurations”, J. Mol. Biol., 7:1 (1963), 95–99 | DOI

[35] M. Wiederstein, M. J. Sippl, “ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins”, Nucleic Acids Res., 35 (2007), W407–W410 | DOI

[36] A. T. Laurie, “Methods for the Prediction of Protein-Ligand Binding Sites for Structure Based Drug Design and Virtual Ligand Screening”, Curr. Protein Pept. Sci., 7 (2006), 395–406 | DOI

[37] J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz, J. Liang, “CASTp: Computed Atlas of Surface Topography of Proteins with Structural and Topographical Mapping of Functionally Annotated Residues”, Nucleic Acids Res., 34 (2006), W116–W118 | DOI

[38] A. T.R. Laurie, R. M. Jackson, “Q-SiteFinder: An Energy-Based Method for the Prediction of Protein-Ligand Binding Sites”, Bioinformatics, 21:9 (2005), 1908–1916 | DOI

[39] T. A. Halgren, “Identifying and Characterizing Binding Sites and Assessing Druggability”, J. Chem. Inf. Model, 49:2 (2009), 377–389 | DOI

[40] L. Goverdhan, B. Revanth, D. Mahendar, B. Manan, P. Sarita Rajender, “Identification and optimisation of novel selective inhibitors against human regulator of G protein signalling 2 (RGS2) protein for type 2 diabetes mellitus: an in silico approach”, Int. J. Comput. Biol. Drug Des, 14:3 (2021), 166–189 | DOI

[41] N. Navaneetha, M. Kiran Kumar, M. Vasavi, K. Bhargavi, P. Sarita Rajender, D. Ramasree, V. Uma, “Angiogenesis: An Insilico Approach to Angiogenic Phenotype”, J. Pharm. Res., 5:1 (2012), 583–588

[42] D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H. J. Wolfson, “PatchDock and SymmDock: Servers for Rigid and Symmetric Docking”, Nucleic Acids Res., 33 (2005), W363–W367 | DOI

[43] Accelrys Discovery Studio Visualiser v 3.5.0.12158, Accelrys Software Inc., San Diego, 2012

[44] S. Ghosh, A. Nie, J. An, Z. Huang, “Structure-Based Virtual Screening of Chemical Libraries for Drug Discovery”, Curr. Opin. Chem. Biol., 10:3 (2006), 194–202 | DOI

[45] G. Klebe, “Virtual Ligand Screening: Strategies, Perspectives and Limitations”, Drug Discov. Today, 11:13-14 (2006), 580–594 | DOI

[46] T. Lengauer, M. Rarey, “Computational Methods for Biomolecular Docking”, Curr. Opin. Struct. Biol, 6:3 (1996), 402–406 | DOI

[47] G. Lanka, R. Bathula, M. Bhargavi, S. R. Potlapall, “Homology modeling and molecular docking studies for the identification of novel potential therapeutics against human PHD3 as a drug target for type 2 diabetes mellitus”, Journal of Drug Delivery and Therapeutics, 9:4 (2019), 265–273 | MR

[48] R. A. Banks J. L. Murphy R. B. Friesner, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry et al, “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy”, J. Med. Chem., 47:7 (2004), 1739–1749 | DOI

[49] S. Kawatkar, H. Wang, R. Czerminski, D. Joseph-McCarthy, “Virtual Fragment Screening: An Exploration of Various Docking and Scoring Protocols for Fragments Using Glide”, J. Comput. Aided. Mol. Des, 23:8 (2009), 527–539 | DOI

[50] M. Podvinec, S. P. Lim, T. Schmidt, M. Scarsi, D. Wen, L. S. Sonntag, P. Sanschagrin, P. S. Shenkin, T. Schwede, “Novel Inhibitors of Dengue Virus Methyltransferase: Discovery by in Vitro-Driven Virtual Screening on a Desktop Computer Grid”, J. Med. Chem., 53:4 (2010), 1483–1495 | DOI

[51] LigPrep, Version 3.3, Schrodinger, LLC, New York, NY, 2010

[52] GLIDE, Version 5.6, Schrodinger, LLC, New York, NY, 2010

[53] R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, D. T. Mainz, “Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein?Ligand Complexes”, J. Med. Chem., 49:21 (2006), 6177–6196 | DOI

[54] A. D. Rodrigues, “Preclinical Drug Metabolism in the Age of High-Throughput Screening: An Industrial Perspec”, Pharm. Res., 14:11 (1997), 1504–1510 | DOI

[55] A. Daina, V. Zoete, “A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules”, Chem. Med. Chem., 11:11 (2016), 1117–1121 | DOI

[56] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T. L. Madden, “NCBI BLAST: A Better Web Interface”, Nucleic Acids Res., 36 (2008), W5–W9 | DOI

[57] S. Karlin, S. F. Altschul, “Methods for Assessing the Statistical Significance of Molecular Sequence Features by Using General Scoring Schemes”, Proc. Natl. Acad. Sci., 87:6 (1990), 2264–2268 | DOI | Zbl

[58] A. Drozdetskiy, C. Cole, J. Procter, G. J. Barton, “JPred4: A Protein Secondary Structure Prediction Server”, Nucleic Acids Res., 43:W1 (2015), W389–W394 | DOI

[59] C. A. Kerfeld, K. M. Scott, “Using BLAST to Teach “E-Value-Tionary” Concepts”, PLoS Biol., 9:2 (2011), e1001014 | DOI

[60] M. Wiederstein, M. J. Sippl, “ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins”, Nucleic Acids Res., 35 (2007), W407–W410 | DOI

[61] G. Bergers, S. Song, N. Meyer-Morse, E. Bergsland, D. Hanahan, “Benefits of Targeting Both Pericytes and Endothelial Cells in the Tumor Vasculature with Kinase Inhibitors”, J. Clin. Invest., 111:9 (2003), 1287–1295 | DOI

[62] A. Ostman, “PDGF Receptors-Mediators of Autocrine Tumor Growth and Regulators of Tumor Vasculature and Stroma”, Cytokine Growth Factor Rev., 15:4 (2004), 275–286 | DOI | MR

[63] R. Erber, A. Thurnher, A. D. Katsen, G. Groth, H. Kerger, H. Hammes, M. D. Menger, A. Ullrich, P. Vajkoczy, “Combined Inhibition of VEGF- and PDGF-signaling Enforces Tumor Vessel Regression by Interfering with Pericyte-mediated Endothelial Cell Survival Mechanisms”, FASEB J., 18:2 (2004), 338–340 | DOI

[64] J. Andrae, R. Gallini, C. Betsholtz, “Role of Platelet-Derived Growth Factors in Physiology and Medicine”, Genes Dev., 22:10 (2008), 1276–1312 | DOI

[65] L. Fredriksson, H. Li, C. Fieber, X. Li, U. Eriksson, “Tissue Plasminogen Activator Is a Potent Activator of PDGF-CC”, EMBO J., 23:19 (2004), 3793–3802 | DOI

[66] T. J. Ritchie, P. Ertl, R. Lewis, “The Graphical Representation of ADME-Related Molecule Properties for Medicinal Chemists”, Drug Discov. Today, 16:1–2 (2011), 65–72 | DOI

[67] A. Breier, L. Gibalova, M. Seres, M. Barancik, Z. Sulova, “New Insight into P Glycoprotein as a Drug Target”, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry Anti-Cancer Agents), 13:1 (2013), 159–170 | DOI

[68] S. J. Park, H. Baars, S. Mersmann, H. Buschmann, J. M. Baron, P. M. Amann, K. Czaja, H. Hollert, K. Bluhm, R. Redelstein, C. Bolm, “NCyano Sulfoximines: COX Inhibition, Anticancer Activity, Cellular Toxicity, and Mutagenicity”, Chem. Med. Chem., 8:2 (2013), 217–220 | DOI