Application of virtual screening and molecular modeling technologies to identify potential SARS-CoV-2 main protease inhibitors
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 15-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A virtual screening of the molecular library of biologically active compounds was carried out to identify potential inhibitors of SARS-CoV-2 main protease (Mpro) which plays an important role in the process of virus replication. Using molecular docking and molecular dynamics, the binding energy of these compounds to the catalytic site of the enzyme was assessed, resulting in six molecules that exhibited high chemical affinity for SARS-CoV-2 Mpro. This is evidenced by the low values of the binding free energy of the ligand/Mpro complexes comparable with those predicted for the potent non-covalent SARSCoV-2 Mpro inhibitor using the identical computational protocol. Based on the data obtained, it was concluded that the identified compounds have a good therapeutic potential for inhibiting the catalytic activity of the enzyme and form promising basic structures for the development of new effective drugs against COVID-19.
@article{MBB_2023_18_1_a4,
     author = {A. M. Andrianov and K. V. Furs and A. V. Gonchar and L. H. Aslanyan and A. V. Tuzikov},
     title = {Application of virtual screening and molecular modeling technologies to identify potential {SARS-CoV-2} main protease inhibitors},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {15--32},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a4/}
}
TY  - JOUR
AU  - A. M. Andrianov
AU  - K. V. Furs
AU  - A. V. Gonchar
AU  - L. H. Aslanyan
AU  - A. V. Tuzikov
TI  - Application of virtual screening and molecular modeling technologies to identify potential SARS-CoV-2 main protease inhibitors
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 15
EP  - 32
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a4/
LA  - ru
ID  - MBB_2023_18_1_a4
ER  - 
%0 Journal Article
%A A. M. Andrianov
%A K. V. Furs
%A A. V. Gonchar
%A L. H. Aslanyan
%A A. V. Tuzikov
%T Application of virtual screening and molecular modeling technologies to identify potential SARS-CoV-2 main protease inhibitors
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 15-32
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a4/
%G ru
%F MBB_2023_18_1_a4
A. M. Andrianov; K. V. Furs; A. V. Gonchar; L. H. Aslanyan; A. V. Tuzikov. Application of virtual screening and molecular modeling technologies to identify potential SARS-CoV-2 main protease inhibitors. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 15-32. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a4/

[1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu et al, “Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding”, Lancet, 395 (2020), 565–574 | DOI

[2] J. F. W. Chan, S. Yuan, K. H. Kok, K. K. W. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C. Y. Yip, R. W. S. Poon et al, “A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster”, Lancet, 395 (2020), 514–523 | DOI

[3] F. Yan, F. Gao, “An overview of potential inhibitors targeting non-structural proteins 3 (PL$^{\mathrm pro}$ and Mac1) and 5 (3C$^{\mathrm pro}$/M$^{\mathrm pro}$) of SARS-CoV-2”, Comput. Struct. Biotechnol. J., 19 (2021), 4868–4883 | DOI

[4] S. Ullrich, C. Nitsche, “The SARS-CoV-2 main protease as drug target”, Bioorg. Med. Chem. Lett., 30 (2020), 127377 | DOI

[5] S. G. Katre, A. J. Asnani, K. Pratyush, N. G. Sakharkar, A. G. Bhope, K. T. Sawarkar, V. S. Nimbekar, “Review on development of potential inhibitors of SARS-CoV-2 main protease (M$^{\mathrm pro}$)”, Futur. J. Pharm. Sci, 8 (2022), 36 | DOI

[6] S. Xia, J. F. W. Chan, Wang L, F. Jiao, K. K. H. Chik, H. Chu, Q. Lan, W. Xu, Q. Wang, C. Wang, Yuen K-Y, L. Lu, S. Jiang, “Peptide-based pan-CoV fusion inhibitors maintain high potency against SARS-CoV-2 Omicron variant”, Cell Res, 32 (2022), 404–406 | DOI

[7] S. Xia, M. Liu, C. Wang, W. Xu, Q. Lan, S. Feng, F. Qi, L. Bao, L. Du, S. Liu, C. Qin, F. Sun, Z. Shi, Y. Zhu, S. Jiang, L. Lu, “Inhibition of SARS-CoV-2 (previously 2019- nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion”, Cell Res, 30 (2020), 343–355 | DOI

[8] K. Tao, P. L. Tzou, J. Nouhin, H. Bonilla, P. Jagannathan, R. W. Shafer, “SARS-CoV-2 antiviral therapy”, Clin. Microbiol. Rev, 34:4 (2022), e0010921 | DOI

[9] Z. Niknam, A. Jafari, A. Golchin, F. D. Pouya, M. Nemati, M. Rezaei-Tavirani, Y. Rasmi, “Potential therapeutic options for COVID-19: an update on current evidence”, Eur. J. Med. Res, 27 (2022), 6 | DOI

[10] Y. Zhang, T. Ye, H. Xi, M. Juhas, J. Li, “Deep learning driven drug discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2”, Front. Microbiol, 2021 | DOI

[11] T. Pillaiyar, M. Manickam, V. M. Namasivayam, Y. Hayashi, S. H. Jung, “An overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy”, J. Med. Chem., 59 (2016), 6595–6628 | DOI

[12] Y. Chen, Q. Liu, D. Guo, “Coronaviruses: genome structure, replication, and pathogenesis”, J. Med. Virol, 92:4 (2020), 418–423 | DOI

[13] P. Colson, J. M. Rolain, J. C. Lagier, P. Brouqui, D. Raoult, “Chloroquine and hydroxychloroquine as available weapons to fight COVID-19”, Int. J. Antimicrob Agents, 55:4 (2020), 105932 | DOI

[14] L. Y. Dong, S. S. Hu, J. J. Gao, “Discovering drugs to treat coronavirus disease 2019 (COVID-19)”, DD T, 14:1 (2020), 58–60 | DOI

[15] V. Balakrishnan, K. Lakshminarayanan, “Screening of FDA Approved Drugs Against SARS-CoV-2 Main Protease: Coronavirus Disease”, Int. J. Pept. Res. Ther., 27:1 (2021), 651–658 | DOI

[16] B. Pendyala, A. Patras, “In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp)”, ChemRxiv, 2022 | DOI

[17] D. R. Owen, C. M. Allerton, A. S. Anderson, L. Aschenbrenner, M. Avery, S. Berritt, B. Boras, R. D. Cardin, A. Carlo, K. J. Coffman et al, “An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19”, Science, 374:6575 (2021), 1586–1593 | DOI

[18] U. S. Food, Drug Administration, (accessed 10.02.2023) https://www.fda.gov/

[19] N. A. Shuldov, A. M. Yushkevich, K. V. Furs, A. V. Tuzikov, A. M. Andrianov, “Razrabotka generativnoi neironnoi seti glubokogo obucheniya dlya kompyuternogo dizaina potentsialnykh ingibitorov koronavirusa SARS-CoV-2”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 188–207 | DOI

[20] A. Dalby, J. G. Nourse, W. D. Hounshell, A. K.I. Gushurst, D. L. Grier, Leland B.A, J. Laufer, “Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited”, J. Chem. Inf. Comp, 32:3, 244–255, 1992 | DOI | MR

[21] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda et al, “DrugBank 5.0: a major update to the DrugBank database for 2018”, Nucl. Acids Res., 46 (2017), D1074–D1082 | DOI

[22] T. Sterling, J. J. Irwin, “ZINC 15 Ligand discovery for everyone”, J. Chem. Inf. Model, 55:11 (2015), 2324–2337 | DOI

[23] O. Trott, A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, J. Comp. Chem., 31 (2010), 455–461 | DOI

[24] M. Wojcikowski, P. Ballester, P. Siedlecki, “Performance of machine-learning scoring functions in structure-based virtual screening”, Sci. Rep., 7 (2017) | DOI

[25] J. D. Durrant, J. A. McCammon, “NNScore 2.0: A neural-network receptor-ligand scoring function”, J. Chem. Inf. Model., 51:11 (2011), 2897–2903 | DOI

[26] K. Palacio-Rodriguez, I. Lans, C. N. Cavasotto, P. Cossio, “Exponential consensus ranking improves the outcome in docking and receptor ensemble docking”, Sci. Rep., 9:1 (2019) | DOI

[27] D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham, III, V. W.D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson et al, AMBER 2018, University of California, 2018

[28] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., 79:2 (1983), 926–935 | DOI | MR

[29] J. P. Ryckaert, G. Ciccotti, H. J.C. Berendsen, “Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys, 23:3 (1977), 327–341 | DOI

[30] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method”, J. Chem. Phys, 103 (1995), 8577–8593 | DOI

[31] J. D. Durrant, McCammon J. A., “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model, 29:6 (2011), 888–893 | DOI

[32] S. Genheden, U. Ryde, “The MM/PBSA and MM/GBSA methods to estimate ligand binding affinity”, Expert Opin. Drug Discov, 10:5 (2015), 449–461 | DOI

[33] C. H. Zhang, E. A. Stone, M. Deshmukh, J. A. Ippolito, M. M. Ghahremanpour, J. Tirado Rives, K. A. Spasov, S. Zhang, Y. Takeo, S. N. Kudalkar et al, “Potent noncovalent inhibitors of the Main Protease of SARS-CoV-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations”, ACS Cent Sci, 7:3 (2021), 467–475 | DOI | MR

[34] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings”, Adv. Drug Deliv. Rev, 46 (2001), 3–26 | DOI

[35] M. T. Qamar, S. M. Alqahtani, M. A. Alamri, L. L. Chen, “Structural basis of SARS-CoV 2 3CLpro and anti-COVID-19 drug discovery from medicinal plants”, J. Pharm. Anal., 10:4 (2020), 313–319 | DOI

[36] A. Daina, O. Michielin, V. Zoete, “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules”, Sci. Rep., 7 (2017), 42717 | DOI

[37] C. Shen, Y. Hu, Z. Wang, H. Zhong, H. Zhang, H. Zhong, G. Wang, X. Yao, L. Xu, D. Cao, T. Hou, “Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions”, Brief. Bioinf, 22:1 (2021), 497–514 | DOI