Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_1_a4, author = {A. M. Andrianov and K. V. Furs and A. V. Gonchar and L. H. Aslanyan and A. V. Tuzikov}, title = {Application of virtual screening and molecular modeling technologies to identify potential {SARS-CoV-2} main protease inhibitors}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {15--32}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a4/} }
TY - JOUR AU - A. M. Andrianov AU - K. V. Furs AU - A. V. Gonchar AU - L. H. Aslanyan AU - A. V. Tuzikov TI - Application of virtual screening and molecular modeling technologies to identify potential SARS-CoV-2 main protease inhibitors JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 15 EP - 32 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a4/ LA - ru ID - MBB_2023_18_1_a4 ER -
%0 Journal Article %A A. M. Andrianov %A K. V. Furs %A A. V. Gonchar %A L. H. Aslanyan %A A. V. Tuzikov %T Application of virtual screening and molecular modeling technologies to identify potential SARS-CoV-2 main protease inhibitors %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 15-32 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a4/ %G ru %F MBB_2023_18_1_a4
A. M. Andrianov; K. V. Furs; A. V. Gonchar; L. H. Aslanyan; A. V. Tuzikov. Application of virtual screening and molecular modeling technologies to identify potential SARS-CoV-2 main protease inhibitors. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 15-32. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a4/
[1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu et al, “Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding”, Lancet, 395 (2020), 565–574 | DOI
[2] J. F. W. Chan, S. Yuan, K. H. Kok, K. K. W. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C. Y. Yip, R. W. S. Poon et al, “A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster”, Lancet, 395 (2020), 514–523 | DOI
[3] F. Yan, F. Gao, “An overview of potential inhibitors targeting non-structural proteins 3 (PL$^{\mathrm pro}$ and Mac1) and 5 (3C$^{\mathrm pro}$/M$^{\mathrm pro}$) of SARS-CoV-2”, Comput. Struct. Biotechnol. J., 19 (2021), 4868–4883 | DOI
[4] S. Ullrich, C. Nitsche, “The SARS-CoV-2 main protease as drug target”, Bioorg. Med. Chem. Lett., 30 (2020), 127377 | DOI
[5] S. G. Katre, A. J. Asnani, K. Pratyush, N. G. Sakharkar, A. G. Bhope, K. T. Sawarkar, V. S. Nimbekar, “Review on development of potential inhibitors of SARS-CoV-2 main protease (M$^{\mathrm pro}$)”, Futur. J. Pharm. Sci, 8 (2022), 36 | DOI
[6] S. Xia, J. F. W. Chan, Wang L, F. Jiao, K. K. H. Chik, H. Chu, Q. Lan, W. Xu, Q. Wang, C. Wang, Yuen K-Y, L. Lu, S. Jiang, “Peptide-based pan-CoV fusion inhibitors maintain high potency against SARS-CoV-2 Omicron variant”, Cell Res, 32 (2022), 404–406 | DOI
[7] S. Xia, M. Liu, C. Wang, W. Xu, Q. Lan, S. Feng, F. Qi, L. Bao, L. Du, S. Liu, C. Qin, F. Sun, Z. Shi, Y. Zhu, S. Jiang, L. Lu, “Inhibition of SARS-CoV-2 (previously 2019- nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion”, Cell Res, 30 (2020), 343–355 | DOI
[8] K. Tao, P. L. Tzou, J. Nouhin, H. Bonilla, P. Jagannathan, R. W. Shafer, “SARS-CoV-2 antiviral therapy”, Clin. Microbiol. Rev, 34:4 (2022), e0010921 | DOI
[9] Z. Niknam, A. Jafari, A. Golchin, F. D. Pouya, M. Nemati, M. Rezaei-Tavirani, Y. Rasmi, “Potential therapeutic options for COVID-19: an update on current evidence”, Eur. J. Med. Res, 27 (2022), 6 | DOI
[10] Y. Zhang, T. Ye, H. Xi, M. Juhas, J. Li, “Deep learning driven drug discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2”, Front. Microbiol, 2021 | DOI
[11] T. Pillaiyar, M. Manickam, V. M. Namasivayam, Y. Hayashi, S. H. Jung, “An overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy”, J. Med. Chem., 59 (2016), 6595–6628 | DOI
[12] Y. Chen, Q. Liu, D. Guo, “Coronaviruses: genome structure, replication, and pathogenesis”, J. Med. Virol, 92:4 (2020), 418–423 | DOI
[13] P. Colson, J. M. Rolain, J. C. Lagier, P. Brouqui, D. Raoult, “Chloroquine and hydroxychloroquine as available weapons to fight COVID-19”, Int. J. Antimicrob Agents, 55:4 (2020), 105932 | DOI
[14] L. Y. Dong, S. S. Hu, J. J. Gao, “Discovering drugs to treat coronavirus disease 2019 (COVID-19)”, DD T, 14:1 (2020), 58–60 | DOI
[15] V. Balakrishnan, K. Lakshminarayanan, “Screening of FDA Approved Drugs Against SARS-CoV-2 Main Protease: Coronavirus Disease”, Int. J. Pept. Res. Ther., 27:1 (2021), 651–658 | DOI
[16] B. Pendyala, A. Patras, “In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp)”, ChemRxiv, 2022 | DOI
[17] D. R. Owen, C. M. Allerton, A. S. Anderson, L. Aschenbrenner, M. Avery, S. Berritt, B. Boras, R. D. Cardin, A. Carlo, K. J. Coffman et al, “An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19”, Science, 374:6575 (2021), 1586–1593 | DOI
[18] U. S. Food, Drug Administration, (accessed 10.02.2023) https://www.fda.gov/
[19] N. A. Shuldov, A. M. Yushkevich, K. V. Furs, A. V. Tuzikov, A. M. Andrianov, “Razrabotka generativnoi neironnoi seti glubokogo obucheniya dlya kompyuternogo dizaina potentsialnykh ingibitorov koronavirusa SARS-CoV-2”, Matematicheskaya biologiya i bioinformatika, 17:2 (2022), 188–207 | DOI
[20] A. Dalby, J. G. Nourse, W. D. Hounshell, A. K.I. Gushurst, D. L. Grier, Leland B.A, J. Laufer, “Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited”, J. Chem. Inf. Comp, 32:3, 244–255, 1992 | DOI | MR
[21] D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda et al, “DrugBank 5.0: a major update to the DrugBank database for 2018”, Nucl. Acids Res., 46 (2017), D1074–D1082 | DOI
[22] T. Sterling, J. J. Irwin, “ZINC 15 Ligand discovery for everyone”, J. Chem. Inf. Model, 55:11 (2015), 2324–2337 | DOI
[23] O. Trott, A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, J. Comp. Chem., 31 (2010), 455–461 | DOI
[24] M. Wojcikowski, P. Ballester, P. Siedlecki, “Performance of machine-learning scoring functions in structure-based virtual screening”, Sci. Rep., 7 (2017) | DOI
[25] J. D. Durrant, J. A. McCammon, “NNScore 2.0: A neural-network receptor-ligand scoring function”, J. Chem. Inf. Model., 51:11 (2011), 2897–2903 | DOI
[26] K. Palacio-Rodriguez, I. Lans, C. N. Cavasotto, P. Cossio, “Exponential consensus ranking improves the outcome in docking and receptor ensemble docking”, Sci. Rep., 9:1 (2019) | DOI
[27] D. A. Case, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham, III, V. W.D. Cruzeiro, T. A. Darden, R. E. Duke, D. Ghoreishi, M. K. Gilson et al, AMBER 2018, University of California, 2018
[28] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, “Comparison of simple potential functions for simulating liquid water”, J. Chem. Phys., 79:2 (1983), 926–935 | DOI | MR
[29] J. P. Ryckaert, G. Ciccotti, H. J.C. Berendsen, “Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes”, J. Comput. Phys, 23:3 (1977), 327–341 | DOI
[30] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, “A smooth particle mesh Ewald method”, J. Chem. Phys, 103 (1995), 8577–8593 | DOI
[31] J. D. Durrant, McCammon J. A., “BINANA: A novel algorithm for ligand-binding characterization”, J. Mol. Graph. Model, 29:6 (2011), 888–893 | DOI
[32] S. Genheden, U. Ryde, “The MM/PBSA and MM/GBSA methods to estimate ligand binding affinity”, Expert Opin. Drug Discov, 10:5 (2015), 449–461 | DOI
[33] C. H. Zhang, E. A. Stone, M. Deshmukh, J. A. Ippolito, M. M. Ghahremanpour, J. Tirado Rives, K. A. Spasov, S. Zhang, Y. Takeo, S. N. Kudalkar et al, “Potent noncovalent inhibitors of the Main Protease of SARS-CoV-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations”, ACS Cent Sci, 7:3 (2021), 467–475 | DOI | MR
[34] C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings”, Adv. Drug Deliv. Rev, 46 (2001), 3–26 | DOI
[35] M. T. Qamar, S. M. Alqahtani, M. A. Alamri, L. L. Chen, “Structural basis of SARS-CoV 2 3CLpro and anti-COVID-19 drug discovery from medicinal plants”, J. Pharm. Anal., 10:4 (2020), 313–319 | DOI
[36] A. Daina, O. Michielin, V. Zoete, “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules”, Sci. Rep., 7 (2017), 42717 | DOI
[37] C. Shen, Y. Hu, Z. Wang, H. Zhong, H. Zhang, H. Zhong, G. Wang, X. Yao, L. Xu, D. Cao, T. Hou, “Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions”, Brief. Bioinf, 22:1 (2021), 497–514 | DOI