Phylogeny and cross-regulation of the YjjM and LeuO transcription factors translated as multiple protein forms from one gene in \emph{Escherichia coli}
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Until recently, no examples of the in-frame translation of several proteins from one gene in bacteria were known. The first one was the VirF transcription factor controlling pathogenicity development in Shigella flexneri and CobB sirtuin in Salmonella enterica. Recently, we observed synthesis of shortened protein products for YjjM (LgoR) and LeuO functioning as transcription factors in Escherichia coli. To determine the evolutionary factors that could lead to the appearance of alternative start codons, we performed phylogenetic analysis and showed that each protein had a unique phylogenetic history, and additional starting methionines appeared only in Enterobacteria. Using the Western-blot analysis of proteins synthesized from the Escherichia coli K-12 MG1655 chromosome with the his-tagged leuO gene two shortened variants of LeuO, corresponding to translation starting from Met34 and Met48 were detected. Synthesis of all three LeuO forms was inhibited in the absence of the yjjM gene, suggesting interplay of these transcription factors. The YjjM recognition motif revealed from the ChIP-seq data appeared to be very similar to that of LeuO, known previously. Taking this into account, we compared ChIP and SELEX data for LeuO and YjjM and found six common targets. At least five of them were confirmed to be under control of these regulators by qRT-PCR. Interestingly, the effects were more prominent during anaerobic growth at 37$^\circ$C simulating conditions inside a host organism. Two genes, coding for the enterobactin transporter FepA, and a repressor of genes responsible for flagellar biosynthesis and virulence YjjQ, were repressed, mainly by YjjM, only in these conditions, while tsr coding for the chemotaxis receptor protein was more repressed under lower temperature and higher aeration.
@article{MBB_2023_18_1_a3,
     author = {T. A. Bessonova and A. A. Rybina and D. A. Marakulina and A. D. Kaznadzey and M. S. Gel'fand and O. N. Ozoline and M. N. Tutukina},
     title = {Phylogeny and cross-regulation of the {YjjM} and {LeuO} transcription factors translated as multiple protein forms from one gene in {\emph{Escherichia} coli}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a3/}
}
TY  - JOUR
AU  - T. A. Bessonova
AU  - A. A. Rybina
AU  - D. A. Marakulina
AU  - A. D. Kaznadzey
AU  - M. S. Gel'fand
AU  - O. N. Ozoline
AU  - M. N. Tutukina
TI  - Phylogeny and cross-regulation of the YjjM and LeuO transcription factors translated as multiple protein forms from one gene in \emph{Escherichia coli}
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 1
EP  - 14
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a3/
LA  - en
ID  - MBB_2023_18_1_a3
ER  - 
%0 Journal Article
%A T. A. Bessonova
%A A. A. Rybina
%A D. A. Marakulina
%A A. D. Kaznadzey
%A M. S. Gel'fand
%A O. N. Ozoline
%A M. N. Tutukina
%T Phylogeny and cross-regulation of the YjjM and LeuO transcription factors translated as multiple protein forms from one gene in \emph{Escherichia coli}
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 1-14
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a3/
%G en
%F MBB_2023_18_1_a3
T. A. Bessonova; A. A. Rybina; D. A. Marakulina; A. D. Kaznadzey; M. S. Gel'fand; O. N. Ozoline; M. N. Tutukina. Phylogeny and cross-regulation of the YjjM and LeuO transcription factors translated as multiple protein forms from one gene in \emph{Escherichia coli}. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a3/

[1] F. Jacob, J. Monod, “Genetic regulatory mechanisms in the synthesis of proteins”, Journal of Molecular Biology, 1961, no. 3, 318–356 | DOI

[2] F. Jacob, D. Perrin, C. Sanchez, J. Monod, “Operon: a group of genes with the expression coordinated by an operator”, Comptes Rendus Hebdomadaires des Se?ances de l'Acade?mie des Sciences, 1960, no. 250, 1727–1729

[3] S. J.W. Busby, “Transcription activation in bacteria: ancient and modern”, Microbiology, 165:4 (2019), 386–395 | DOI

[4] T. Shimada, A. Bridier, R. Briandet, A. Ishihama, “Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS”, Molecular Microbiology, 82:2 (2011), 378–397 | DOI

[5] A. Ishihama, T. Shimada, Y. Yamazaki, “Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors”, Nucleic Acids Research, 44:5 (2016), 2058–2074 | DOI

[6] A. C. Tucker, J. C. Escalante-Semerena, “Biologically active isoforms of CobB sirtuin deacetylase in Salmonella enterica and Erwinia amylovora”, Journal of Bacteriology, 192:23, 6200–6208 | DOI

[7] T. Umehara, S. Kosono, D. Soll, K. Tamura, “Lysine Acetylation Regulates Alanyl-tRNA Synthetase Activity in Escherichia coli”, Genes (Basel), 9:10 (2018), 473 | DOI

[8] M. L. Di Martino, C. Romilly, E. G.H. Wagner, B. Colonna, G. Prosseda, “One Gene and Two Proteins: a Leaderless mRNA Supports the Translation of a Shorter Form of the Shigella VirF Regulator”, mBio, 7:6 (2016), 1–10 | DOI

[9] G. Prosseda, M. Falconi, M. Giangrossi, C. O. Gualerzi, G. Micheli, B. Colonna, “The virF promoter in Shigella: More than just a curved DNA stretch”, Molecular Microbiology, 51:2 (2004), 523–537 | DOI

[10] E. Perez-Rueda, J. Collado-Vides, L. Segovia, “Phylogenetic distribution of DNA binding transcription factors in bacteria and archaea”, Computational biology and chemistry, 28:5-6 (2004), 341–350 | DOI | Zbl

[11] I. A. Suvorova, M. N. Tutukina, D. A. Ravcheev, D. A. Rodionov, O. N. Ozoline, M. S. Gelfand, “Comparative genomic analysis of the hexuronate metabolism genes and their regulation in gammaproteobacteria”, Journal of Bacteriology, 193:15 (2011), 3956–3963 | DOI

[12] S. Henikoff, G. W. Haughn, J. M. Calvo, J. C. Wallace, “A large family of bacterial activator proteins”, Proceedings of the National Academy of Sciences of the United States of America, 85:18 (1988), 6602–6606 | DOI

[13] K. M. Hertzberg, R. Gemmill, J. Jones, J. M. Calvo, “Cloning of an EcoRI-generated fragment of the leucine operon of Salmonella typhimurium”, Gene, 8:2 (1980), 135–152 | DOI

[14] I. Hernandez-Lucas, E. Calva, “The coming of age of the LeuO regulator”, Molecular Microbiology, 85:6 (2012), 1026–1028 | DOI

[15] S. C. Dillon, E. Espinosa, K. Hokamp, D. W. Ussery, J. Casadesus, C. J. Dorman, “LeuO is a global regulator of gene expression in Salmonella enterica serovar Typhimurium”, Molecular Microbiology, 85 (2012), 1072–1089 | DOI

[16] I. Hernandez-Lucas, A. L. Gallego-Hernandez, S. Encarnacion, M. Fernandez-Mora, A. G. Martinez-Batallar, H. Salgado, R. Oropeza, E. Calva, “The LysR-type transcriptional regulator LeuO controls expression of several genes in Salmonella enterica serovar Typhi”, Journal of Bacteriology, 190:5 (2008), 1658–1670 | DOI

[17] NCBI RefSeq FTP, (accessed 20.01.2023) https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/

[18] FTP EMBL-EBI, (accessed 20.01.2023) https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam35.0/

[19] FTP UniProt, (accessed 20.01.2023) https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/

[20] FTP NCBI, (accessed 20.01.2023) https://ftp.ncbi.nih.gov/pub/taxonomy/

[21] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, “Basic local alignment search tool”, Journal of Molecular Biology, 215:3 (1990), 403–410 | DOI

[22] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, “Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools”, Bioinformatics, 25:16 (2009), 2078–2079 | DOI

[23] J. Huerta-Cepas, D. Szklarczyk, D. Heller, A. Hernandez-Plaza, S. K. Forslund, H. Cook, D. R. Mende, I. Letunic, T. Rattei, L. J. Jensen, C. von Mering, P. Bork, “eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses”, Nucleic Acids Research, 47:D1 (2019), D309-D314 | DOI

[24] K. Katoh, K. Misawa, K. Kuma, T. Miyata, “MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform”, Nucleic Acids Research, 30:14 (2002), 3059–3066 | DOI

[25] M. N. Price, P. S. Dehal, A. P. Arkin, “FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix”, Molecular Biology and Evolution, 26:7 (2009), 1641–1650 | DOI

[26] M. Steinegger, J. Soding, “MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets”, Nature Biotechnology, 2017, no. 35, 1026–1028 | DOI

[27] P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, M. J. L. de Hoon, “Biopython: freely available Python tools for computational molecular biology and bioinformatics”, Bioinformatics, 25:11 (2009), 1422–1423 | DOI

[28] I. Letunic, P. Bork, “Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation”, Nucleic Acids Research, 49:W1 (2021), W293–W296 | DOI

[29] V. Zulkower, S. Rosser, “DNA Features Viewer: A sequence annotation formatting and plotting library for Python”, Bioinformatics, 36:15 (2020), 4350–4352 | DOI

[30] TEC database, (accessed 20.01.2023) https://shigen.nig.ac.jp/ecoli/tec/top/

[31] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum, R. M. Myers, M. Brown, W. Li, X. S. Liu, “Model-based analysis of ChIP Seq (MACS)”, Genome Biology, 9 (2008), R137 | DOI

[32] A. R. Quinlan, I. M. Hall, “BEDTools: a flexible suite of utilities for comparing genomic features”, Bioinformatics, 26:6 (2010), 841–842 | DOI

[33] T. L. Bailey, J. Johnson, C. E. Grant, Noble W. S., “The MEME Suite”, Nucleic Acids Research, 43:W1, W39–W49 | MR

[34] D. J. Lee, L. E.H. Bingle, K. Heurlier, M. J. Pallen, C. W. Penn, S. J.W. Busby, J. L. Hobman, “Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains”, BMC Microbiology, 9:252 (2009), 1–14 | DOI

[35] U. K. Laemmli, “Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4”, Nature, 227 (1970), 680–685 | DOI

[36] K. Igarashi, A. Ishihama, “Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP CRP”, Cell, 65:6 (1991), 1015–1022 | DOI

[37] Y. A. Purtov, O. A. Glazunova, S. S. Antipov, V. O. Pokusaeva, E. E. Fesenko, E. V. Preobrazhenskaya, K. S. Shavkunov, M. N. Tutukina, V. I. Lukyanov, O. N. Ozoline, “Promoter islands as a platform for interaction with nucleoid proteins and transcription factors”, Journal of Bioinformatics and Computational Biology, 12:2 (2014), 1441006 | DOI

[38] D. Yang, J. Dong, X. Su, W. Zhang, L. Zhang, L. Li, L. Lv, L. Guo, “Functional analysis of the uropathogenic Escherichia coli R049 gene”, Microbiological Research, 171 (2015), 39–44 | DOI

[39] Regulon DB Database, (accessed 20.01.2023) http://regulondb.ccg.unam.mx/gene?term=ECK120000524&organism=ECK12&format=jsp&type=gene