Mathematical modeling of antihypertensive therapy with azilsartan medoxomil on the example of clinical data of a real patient
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 228-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hypertension is a pathology caused by increased systolic and/or diastolic blood pressure. The disease can be controlled by various antihypertensive drugs. This study simulates the response of the human cardiovascular and renal systems to the action of the angiotensin II receptor blocker azilsartan medoxomil, taking into account dual combinations of this drug with the thiazide diuretic hydrochlorothiazide, the $\beta$-blocker bisoprolol and the calcium channel blocker amlodipine. For this purpose, we consider an agent-based mathematical model of blood pressure regulation, previously developed in the BioUML software and including pharmacodynamic functions for hydrochlorothiazide, bisoprolol, and amlodipine. To simulate the effect of azilsartan, we extended the model with a dose-dependent constant that reduces the rate of binding of angiotensin II to AT1 receptors in accordance with the pharmacological action of the drug. The identification of this constant was carried out on the basis of known clinical trials of azilsartan. The model was tested on a population of virtual patients (equilibrium parametrizations of the model within the specified physiological constraints) with uncomplicated hypertension and uniformly distributed values of systolic/diastolic blood pressure and heart rate. Then, a methodological issue of adapting the model to the clinical parameters of a real patient was considered.
@article{MBB_2023_18_1_a2,
     author = {A. D. Borodulina and E. O. Kutumova and G. I. Lifshits and F. A. Kolpakov},
     title = {Mathematical modeling of antihypertensive therapy with azilsartan medoxomil on the example of clinical data of a real patient},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {228--250},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a2/}
}
TY  - JOUR
AU  - A. D. Borodulina
AU  - E. O. Kutumova
AU  - G. I. Lifshits
AU  - F. A. Kolpakov
TI  - Mathematical modeling of antihypertensive therapy with azilsartan medoxomil on the example of clinical data of a real patient
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 228
EP  - 250
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a2/
LA  - ru
ID  - MBB_2023_18_1_a2
ER  - 
%0 Journal Article
%A A. D. Borodulina
%A E. O. Kutumova
%A G. I. Lifshits
%A F. A. Kolpakov
%T Mathematical modeling of antihypertensive therapy with azilsartan medoxomil on the example of clinical data of a real patient
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 228-250
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a2/
%G ru
%F MBB_2023_18_1_a2
A. D. Borodulina; E. O. Kutumova; G. I. Lifshits; F. A. Kolpakov. Mathematical modeling of antihypertensive therapy with azilsartan medoxomil on the example of clinical data of a real patient. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 228-250. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a2/

[1] I. E. Chazova, Y. V. Zhernakova, “Diagnosis and treatment of arterial hypertension [Guidelines]”, Systemic Hypertension, 16:1 (2019), 6–31 | DOI

[2] S. A. Boitsov, Yu. A. Balanova, S. A. Shalnova, A. D. Deev, G. V. Artamonova, T. M. Gatagonova, D. V. Duplyakov, A. Yu. Efanov, Yu. V. Zhernakova, I. E. Chazova i dr, “Arterialnaya gipertoniya sredi lits let: rasprostranennost, osvedomlennost, lechenie i kontrol. Po materialam issledovaniya esse”, Kardiovaskulyarnaya terapiya i profilaktika, 13:4 (2014), 25–64 | DOI

[3] E. Rapsomaniki, A. Timmis, J. George, M. Pujades-Rodriguez, A. D. Shah, S. Denaxas, I. R. White, M. J. Caulfield, J. E. Deanfield, L. Smeeth et al, “Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 125 million people”, Lancet (London, England), 383:9932 (2014), 1899–1911 | DOI

[4] A. N. Britov, “Profilaktika arterialnoi gipertonii na populyatsionnom urovne: Vozmozhnosti i aktualnye zadachi”, Rmzh, 5:9 (1997)

[5] S. Oparil, M. C. Acelajado, G. L. Bakris, D. R. Berlowitz, R. Cifkova, A. F. Dominiczak, G. Grassi, J. Jordan, N. R. Poulter, A. Rodgers et al, “Hypertension”, Nature Reviews Disease Primers, 4 (2018), 18014 | DOI

[6] B. Williams, G. Mancia, W. Spiering, E. Agabiti Rosei, M. Azizi, M. Burnier, D. L. Clement, A. Coca, G. de Simone, A. Dominiczak et al, “ESC/ESH Guidelines for the management of arterial hypertension”, European Heart Journal, 39:33 (2018), 3021–3104 | DOI

[7] F. Karaaslan, Y. Denizhan, A. Kayserilioglu, H. O. Gulcur, “Long-term mathematical model involving renal sympathetic nerve activity, arterial pressure, and sodium excretion”, Annals of Biomedical Engineering, 33:11 (2005), 1607–1630 | DOI

[8] K. M. Hallow, A. Lo, J. Beh, M. Rodrigo, S. Ermakov, S. Friedman, H. de Leon, A. Sarkar, Y. Xiong, R. Sarangapani et al, “A model-based approach to investigating the pathophysiological mechanisms of hypertension and response to antihypertensive therapies: Extending the Guyton model”, American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 306:9 (2014), R647-R662 | DOI

[9] K. M. Hallow, Y. Gebremichael, “A quantitative systems physiology model of renal function and blood pressure regulation: Model description”, CPT: Pharmacometrics and Systems Pharmacology, 6:6 (2017), 383–392 | DOI

[10] A. P. Proshin, Yu. V. Solodyannikov, “Matematicheskoe modelirovanie sistemy krovoobrascheniya i ego prakticheskie primeneniya”, Avtomatika i telemekhanika, 2006, no. 2 | DOI | MR | Zbl

[11] E. Kutumova, I. Kiselev, R. Sharipov, G. Lifshits, F. Kolpakov, “Thoroughly Calibrated Modular Agent-Based Model of the Human Cardiovascular and Renal Systems for Blood Pressure Regulation in Health and Disease”, Frontiers in Physiology, 12 (2021) | DOI

[12] E. Kutumova, I. Kiselev, R. Sharipov, G. Lifshits, F. Kolpakov, “Mathematical modeling of antihypertensive therapy”, Front Physiol, 2022, no. 13 | DOI

[13] I. Y. Chazova, Y. V. Zhernakova, N. V. Blinova, A. N. Rogoza, “The new angiotensin II receptor blocker EdarbiR as part of the pathogenetic treatment of arterial hypertension in patients with metabolic disorders”, Systemic Hypertension, 14:3 (2017) | DOI

[14] G. Bonner, G. Bakris, D. Sica, M. A. Weber, W. B. White, A. Perez, C. Cao, A. Handley, S. Kupfer, “Antihypertensive efficacy of the angiotensin receptor blocker azilsartan medoxomil compared with the angiotensin-converting enzyme inhibitor ramipril”, PubMed, 2013 | DOI

[15] T. V. Martynyuk, I. E. Chazova, Preimuschestva azilsartana medoksomila u patsientov s arterialnoi gipertoniei: kak pravilno osuschestvit vybor i optimizirovat antigipertenzivnuyu terapiyu?, Sistemnye gipertenzii, 14:2 (2017), 45–50

[16] S. V. Nedogoda, E. V. Chumachek, V. V. Tsoma, A. S. Salasyuk, V. O. Smirnova, E. A. Popova, “Vozmozhnosti azilsartana v korrektsii insulinorezistentnosti i urovnya adipokinov pri arterialnoi gipertenzii v sravnenii s drugimi sartanami”, Rossiiskii kardiologicheskii zhurnal, 2019, no. 1, 70–79 | DOI

[17] F. Kolpakov, I. Akberdin, T. Kashapov, L. Kiselev, S. Kolmykov, Y. Kondrakhin, E. Kutumova, N. Mandrik, S. Pintus, A. Ryabova et al, “BioUML: An integrated environment for systems biology and collaborative analysis of biomedical data”, Nucleic Acids Research, 47:W1 (2019), W225–W233 | DOI

[18] F. Kolpakov, I. Akberdin, I. Kiselev, S. Kolmykov, Y. Kondrakhin, M. Kulyashov, E. Kutumova, Pintu, S., A. Ryabova, R. Sharipov et al, “BioUML-towards a universal research platform”, Nucleic Acids Research, 50:W1 (2022), W124–W131 | DOI

[19] A. Stephanou, V. Volpert, “Hybrid Modelling in Biology: A Classification Review”, Mathematical Modelling of Natural Phenomena, 11:1 (2016) | DOI | MR | Zbl

[20] A. Hindmarsh, “SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers”, ACM Transactions on Mathematical Software, 31:3 (2005) | DOI | MR | Zbl

[21] M. Soheilypour, M. Mofrad, “Agent-Based Modeling in Molecular Systems Biology”, BioEssays: news and reviews in molecular, cellular and developmental biology, 2018 | DOI

[22] I. Alwi, “Diagnosis and management of cardiogenic pulmonary edema”, Acta Medica Indonesiana, 42:3 (2010), 176–184

[23] E. V. Grigoryev, A. E. Bautin, M. Yu. Kirov, D. L. Shukevich, R. A. Kornelyuk, “Cardiogenic shock associated with acute coronary syndrome: The current state of the problem of diagnostics and intensive care”, Article. Annals of Critical Care, 2 (2020), 73–85 | DOI

[24] S. Nadler, J. Hidalgo, T. Bloch, “Prediction of blood volume in normal human adults”, Surgery, 1962 | DOI

[25] H. Rakugi, K. Enya, K. Sugiura, Y. Ikeda, “Comparison of the efficacy and safety of azilsartan with that of candesartan cilexetil in Japanese patients with grade I-II essential hypertension: A randomized, double-blind clinical study”, Hypertension Research, 35:5 (2012) | DOI

[26] W. White, M. Weber, D. Sica, “Effects of the Angiotensin Receptor Blocker Azilsartan Medoxomil Versus Olmesartan and Valsartan on Ambulatory and Clinic Blood Pressure in Patients With Stages 1 and 2 Hypertension”, Hypertension, 57 (2011), 413–420 | DOI

[27] K. Kario, S. Hoshide, “Age-Related Difference in the Sleep Pressure-Lowering Effect Between an Angiotensin II Receptor Blocker and a Calcium Channel Blocker in Asian Hypertensives”, Hypertension, 65 (2015), 729–735 | DOI

[28] R. E. Schmieder, S. A. Potthoff, P. Bramlage, P. Baumgart, F. Mahfoud, H. Buhck, T. Ouarrak, M. Ehmen, J. Senges, A. K. Gitt, “Patients With Newly Diagnosed Hypertension Treated With the Renin Angiotensin Receptor Blocker Azilsartan Medoxomil vs Angiotensin-Converting Enzyme Inhibitors: The Prospective EARLY Registry”, The Journal of Clinical Hypertension, 17:12 (2015), 947–953 | DOI

[29] G. Bakris, “The Comparative Effects of Azilsartan Medoxomil and Olmesartan on Ambulatory and Clinic Blood Pressure”, The Journal of Clinical Hypertension, 13:2 (2011), 81–88 | DOI

[30] M. A. Weber, W. B. White, D. Sica, G. L. Bakris, C. Cao, A. Roberts, S. Kupfer, “Effects of combining azilsartan medoxomil with amlodipine in patients with stage 2 hypertension”, Blood Pressure Monitoring, 19:2 (2014), 90–97 | DOI

[31] G. Bakris, “Antihypertensive Efficacy of Hydrochlorothiazide vs Chlorthalidone Combined with Azilsartan Medoxomil”, The American Journal of Medicine, 125:12 (2012) | DOI

[32] Hiromi Rakugia, Kohei Shimizub, Yuya Nishiyamab, Yuhei Sanob, Yuusuke Umedab, “A phase III, open-label, multicenter study to evaluate the safety and efficacy of long-term triple combination therapy with azilsartan, amlodipine, and hydrochlorothiazide in patients with essential hypertension”, Blood Pressure, 27:3 (2018), 125–133 | DOI

[33] E. Angeloni, “Azilsartan medoxomil in the management of hypertension: An evidence-based review of its place in therapy”, Core Evidence, 11 (2016), 1–10 | DOI

[34] R. Dargad, J. Parekh, S. Kukrety, “Azilsartan: Novel Angiotensin Receptor Blocker”, The Journal of the Association of Physicians of India, 64 (2016), 96–98 (data obrascheniya: 23.02.2023) https://pubmed.ncbi.nlm.nih.gov/27731574/

[35] J. D. Jones, S. H. Jackson, C. Agboton, T. S. Martin, “Azilsartan Medoxomil (Edarbi)”, Pharmacy and Therapeutics, 36:10 (2011), 634–640 (data obrascheniya: 23.02.2023) https://pubmed.ncbi.nlm.nih.gov/22346296/

[36] H. Makani, S. Bangalore, A. Supariwala, J. Romero, E. Argulian, F. H. Messerli, “Antihypertensive efficacy of angiotensin receptor blockers as monotherapy as evaluated by ambulatory blood pressure monitoring: A meta-analysis”, European Heart Journal, 35:26 (2014), 1732–1742 | DOI

[37] K. Zaiken, J. W.M. Cheng, “Azilsartan Medoxomil: A New Angiotensin Receptor Blocker”, Clinical Therapeutics, 33:11 (2011), 1577–1589 | DOI