Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_1_a13, author = {O. I. Krivorot'ko and S. I. Kabanikhin and V. S. Petrakova}, title = {The identifiability of mathematical models in epidemiology: {Tuberculosis,} {HIV,} {COVID-19}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {177--214}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a13/} }
TY - JOUR AU - O. I. Krivorot'ko AU - S. I. Kabanikhin AU - V. S. Petrakova TI - The identifiability of mathematical models in epidemiology: Tuberculosis, HIV, COVID-19 JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 177 EP - 214 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a13/ LA - ru ID - MBB_2023_18_1_a13 ER -
%0 Journal Article %A O. I. Krivorot'ko %A S. I. Kabanikhin %A V. S. Petrakova %T The identifiability of mathematical models in epidemiology: Tuberculosis, HIV, COVID-19 %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 177-214 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a13/ %G ru %F MBB_2023_18_1_a13
O. I. Krivorot'ko; S. I. Kabanikhin; V. S. Petrakova. The identifiability of mathematical models in epidemiology: Tuberculosis, HIV, COVID-19. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 177-214. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a13/
[1] Kabanikhin S. I., “Definitions, examples of inverse and ill-posed problems”, Journal of Inverse and Ill-posed Problems, 16:4 (2008), 317–357 | DOI | MR | Zbl
[2] T. V. Avdeenko, V. G. Gorskii, Postroenie dinamicheskikh modelei v prostranstve sostoyanii: Analiz strukturnoi identifitsiruemosti, monografiya, Seriya , Izd-vo NGTU, Novosibirsk, 2007, 292 pp.
[3] H. Miao, X. Xia, A. S. Perelson, H. Wu, “On identifiability of nonlinear ODE models and applications in viral dynamics”, SIAM Review, 53:1 (2011), 3–39 | DOI | MR | Zbl
[4] F. Hamelin, A. Iggidr, A. Rapaport, Sallet G., Observability, Identifiability, Epidemiology. A survey, arXiv: (data accessed: 07.10.2021) 2011.12202
[5] K. Glover, J. Willems, “Parametrization of linear dynamical systems: canonical forms and identifiability”, IEEE Trans on Automatic Control, 19 (1974), 640–646 | DOI | MR | Zbl
[6] R. Bellman, K. Astrom, “On structural identifiability”, Math. Biosci, 30:4 (1970), 65–74
[7] M. Grewal, K. Glover, “Identifiability of linear and nonlinear dynamical systems”, IEEE Trans on Automatic Control, 21:6 (1976), 833–837 | DOI | MR | Zbl
[8] C. Cobelli, J. DiStefano, “Parameter and structural identifiability concepts and ambiguities: a Critical review and analysis”, Amer. J. Physiology-Regulatory, Integrative and Comparative Physiology, 3 (1980), 369–380
[9] T. Tunali, T. Tarn, “New Results for Identifiability of Nonlinear Systems”, IEEE Transactions on Automatic Control, 15 (1987), 45–51 | MR
[10] S. Vajda, “Identifiability of first order reaction systems”, Reaction Kinetics and Catalysis Letters, 11:1 (1979), 39–43 | DOI
[11] S. Audoly, L. D'angio, “On the identifiability of linear compartmental system: a revisited transfer function approach based on topological properties”, Mathematical Biosciences, 66:2 (1983), 201–208 | DOI | MR
[12] V. F. Scherbak, “Usloviya identifitsiruemosti dinamicheskikh sistem. Matematicheskaya fizika”, IEEE Transactions on Automatic Control, 34 (1983), 105–108
[13] A. A. Levakov, “Identifitsiruemost nelineinykh sistem”, Differentsialnye uravneniya, 19:6 (1983), 1074–1078 | MR
[14] V. V. Karelin, “Algoritm dlya otsenki vektora parametrov lineinykh dinamicheskikh sistem s diskretno-izmeryaemymi funktsiyami”, Voprosy mekhaniki i protsessov upravleniya, 359:5 (1982)
[15] T. V. Avdeenko, S. A. Kargin, “Analiz identifitsiruemosti lineinykh dinamicheskikh modelei s ispolzovaniem separatorov parametricheskogo prostranstva”, Sib. zhurn. industr. matem., 9:3 (2006), 3–16 | Zbl
[16] A. A. Lomov, “Sovmestnaya identifitsiruemost koeffitsientov lineinykh raznostnykh uravnenii ob'ekta i additivnykh vozmuschenii”, Vestnik NGU. Seriya: matematika, mekhanika, informatika, 15:4 (2015), 46–57
[17] A. A. Yakimenko, “K voprosu ob identifitsiruemosti sistem odnovremennykh uravnenii”, Trudy BGTU, 3:2 (2022), 10–13 | DOI
[18] M. Saccomani, C. Cobeli, “Qualitative Experiment Design in Physiological System Identification”, IEEE Control System, 3:12 (1992), 18–23
[19] R. Brown, “Identifiability: role in design of pharmacokinetic experiments”, IEEE Transactions on Biomedical Engineering, 14:3 (1982), 31–41
[20] M. Saccomani, S. Audoly, L. Angio, “An Effective Automatic Procedure for Testing Parameter Identifiability of HIV/AIDS Models”, Bull. Math. Biol., 73 (1978), 1734–1753 | DOI | MR
[21] G. Bellu, M. Saccomani, S. Audoly, “Comput Methods Programs”, Biomed. Mathematical Biosciences, 5 (2007), 67–75
[22] N. Meshkat, C. Anderson, J. D. III, “Alternative to Ritt's Pseudodivision for finding the input-output equations of multi-output models”, Mathematical Biosciences, 239:1 (2012), 117–123 | DOI | MR | Zbl
[23] N. Meshkat, C. Er-zhen Kuo, J. DiStefano, “Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A NovelWeb Implementation”, Plos One, 9:10 (2014) | DOI
[24] E. Carson, C. Cobelli, Modelling Methodology for Physiology and Medicine, Academic Press, New-York, 2001
[25] E. Carson, C. Cobelli, Introduction to Modelling in Physiology and Medicine, Academic Press, New-York, 2008
[26] A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand, J. Timmer, “Comparison of approaches for parameter identifiability analysis of biological systems”, Bioinformatics, 30:10 (2014), 1440–1448 | DOI
[27] S. I. Kabanikhin, D. A. Voronov, A. A. Grodz, O. I. Krivorotko, “Identifitsiruemost matematicheskikh modelei meditsinskoi biologii”, Vavilovskii zhurnal genetiki i selektsii, 19:6 (2015), 738–744
[28] A. F. Villaverde, A. Barreiroc, “Identifiability of large nonlinear biochemical networks”, MATCH Commun. Math. Comput. Chem, 76 (2016), 259–296 | MR | Zbl
[29] A. Saltelli, K. Chan, M. Scott, Sensitivity Analysis, Wiley, Hoboken, 2000 | MR | Zbl
[30] A. Raue, C. Kreutz, T. Maiwald, “Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood”, Bioinformatics, 25:15 (2009), 1923–1929 | DOI
[31] B. M. Adams, H. T. Banks, M. Davidian, Hee-Dae Kwon, H. T. Tran, S. N. Wynne, E. S. Rosenberg, “On Hiv dynamics: modeling, data analysis, and optimal treatment protocols”, Journal of Computational and Applied Mathematics, 184:1 (2005), 10–49 | DOI | MR | Zbl
[32] G. Bellu, M. P. Saccomani, S. Audoly, L. D'Angio, “DAISY: A new software tool to test global identifiability of biological and physiological systems”, Computer Methods and Programs in Biomedicine, 88:1 (2007), 52–61 | DOI
[33] O. I. Krivorotko, D. V. Andornaya, S. I. Kabanikhin, “Analiz chuvstvitelnosti i prakticheskaya identifitsiruemost matematicheskikh modelei biologii”, Sibirskii zhurnal industrialnoi matematiki, 23:1 (2020), 107–125 | MR | Zbl
[34] A. Raue, V. Becker, U. Klingmuller, J. Timmer, “Identifiability and observability analysis for experimental design in nonlinear dynamical models”, Chaos, 20:4 (2010), 045105 | DOI | Zbl
[35] W. O. Kermack, A. G. McKendrick, “A contribution to the mathematical theory of epidemics”, Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 115:772 (1927), 700–721
[36] P. Magal, G. Webb, “The parameter identification problem for SIR epidemic models: identifying unreported cases”, Journal of Mathematical Biology, 77:6-7 (2018), 1629–1648 | DOI | MR | Zbl
[37] N. D. Evans, L. J. White, M. J. Chapman, K. R. Godfrey, M. J. Chappell, “The structural identifiability of the susceptible infected recovered model with seasonal forcing”, Mathematical Biosciences, 194:2 (2005), 175–197 | DOI | MR | Zbl
[38] S. Diop, M. Fliess, “Nonlinear observability, identifiability, and persistent trajectories”, Proceedings of the 30th IEEE Conference on Decision and Control, v. 1, 1991, 714–719
[39] E. R. Kolchin, Differential Algebra, Algebraic Groups, Academic Press, Cambridge, 1973 | MR | Zbl
[40] L. Ljung, T. Glad, “On global identifiability for arbitrary model parametrizations”, Automatica, 30:2 (1994), 265–276 | DOI | MR | Zbl
[41] S. K. Godunov, A. G. Antonov, O. P. Kirilyuk, V. I. Kostin, Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Izd. 2, Nauka, Novosibirsk, 1992 | MR
[42] V. A. Cheverda, V. I. Kostin, “r-psevdoobratnyi dlya kompaktnogo operatora”, Sibirskie elektronnye matematicheskie izvestiya, 7 (2010), 258–282
[43] H. T. Banks, S. I. Kabanikhin, O. I. Krivorotko, D. V. Yermolenko, “A numerical algorithm for constructing an individual mathematical model of HIV dynamics at cellular level”, Journal of Inverse and Ill-posed Problems, 26:6 (2018), 859–873 | DOI | MR | Zbl
[44] S. I. Kabanihin, O. I. Krivorotko, D. V. Ermolenko, V. N. Kashtanova, V. A. Latyshenko, “Inverse problems of immunology and epidemiology”, Eurasian Journal of Mathematical and Computer Applications, 5:2 (2017), 14–35 | DOI
[45] F. G. Wieland, A. L. Hauber, M. Rosenblatt, C. Tonsing, J. Timmer, “On structural and practical identifiability”, Current Opinion in Systems Biology, 25 (2021), 60–69 | DOI
[46] Rodriguez-Fernandez M., Egea J.A., Banga J. R., “Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems”, BMC Bioinformatics, 7:483 (2006)
[47] N. Metropolis, S. Ulam, “The Monte Carlo method”, Journal of the American Statistical Association, 44:247 (1949), 335–341 | DOI | MR | Zbl
[48] D. G. Cacuci, Sensitivity and uncertainty analysis: theory, v. 1, Chapman Hall/CRC, New York, 2003, 304 pp. | MR | Zbl
[49] V. Latyshenko, O. I. Krivorotko, Kabanikhin S.I, S. Zhang, V. N. Kashtanova, D. V. Yermolenko, “Identifiability analysis of inverse problems in biology”, Proceedings of the 2nd International Conference on Computational Modeling, Simulation and Applied Mathematics, CMSAM2017, 2017, 567–571
[50] T. Quaiser, M. Monnigmann, “Systematic identifiability testing for unambiguous mechanistic modeling application to JAK-STAT, MAP kinase, and NF-? B signaling pathway models”, BMC Systems Biology, 3:1 (2009) | DOI
[51] R. I. Cukier, C. M. Fortuin, K. E. Schuler, A. G. Petschek, J. H. Schaibly, “Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients”, The Journal of Chemical Physics, 59 (1973), 3873–3878 | DOI
[52] I. M. Sobol, “Ob otsenke chuvstvitelnosti nelineinykh matematicheskikh modelei”, Matematicheskoe modelirovanie, 2:1 (1990), 112–118 | MR | Zbl
[53] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, “Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index”, Computer Physics Communications, 180 (2010), 259–270 | DOI | MR
[54] E. Unlu, H. Leger, O. Motornyi, A. Rukubayihunga, T. Ishacian, M. Chouiten, Epidemic analysis of COVID-19 Outbreak and Counter-Measures in France, Medrxiv, (data accessed: 01.05.2020) https://www.medrxiv.org/content/10.1101/2020.04.27.20079962v1
[55] O. I. Krivorotko, S. I. Kabanikhin, N. Yu. Zyatkov, A. Yu. Prikhodko, N. M. Prokhoshin, M. A. Shishlenin, “Matematicheskoe modelirovanie i prognozirovanie COVID-19 v Moskve i Novosibirskoi oblasti”, Sibirskii zhurnal vychislitelnoi matematiki, 23:4 (2020), 395–414 | MR | Zbl
[56] O. I. Krivorotko, N. Y. Zyatkov, “Data-driven regularization of inverse problem for SEIR-HCD model of COVID-19 propagation in Novosibirsk region”, Eurasian Journal of Mathematical and Computer Applications, 10:1 (2022), 51–68 | DOI | MR
[57] L. I. Roeger, Z. Feng, Castillo-Chavez C., “Modeling TB and HIV co-infections”, Mathematical Biosciences and Engineering, 6:4 (2009), 815–837 | DOI | MR | Zbl
[58] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byulleten Moskovskogo gosudarstvennogo universiteta, 1:6 (1937), 1–26
[59] I. Andrianakis, I. R. Vernon, N. McCreesh, T. J. McKinley, J. E. Oakley, R. N. Nsubuga, M. Goldstein, R. G. White, “Bayesian history matching of complex infectiousdisease models using emulation: a tutorial and a case study on HIV in Uganda”, PLOS Computational Biology, 11:1 (2015), e1003968 | DOI
[60] A. Raue, J. Karlsson, M. P. Saccomani, M. Jirstrand, J. Timmer, “Comparison of approaches for parameter identifiability analysis of biological systems”, Bioinformatics, 30:10 (2014), 1440–1448 | DOI
[61] O. I. Krivorotko, S. I. Kabanikhin, M. I. Sosnovskaya, D. V. Andornaya, “Analiz chuvstvitelnosti i prakticheskaya identifitsiruemost matematicheskikh modelei biologii”, Vavilovskii zhurnal genetiki i selektsii, 25:1 (2021), 82–91 | MR
[62] O. Krivorotko, M. Sosnovskaia, I. Vashchenko, C. Kerr, D. Lesnic, “Agent-based modeling of COVID-19 outbreaks for New York state and UK: Parameter identification algorithm”, Infect. Dis. Model, 7:1 (2022), 30–44 | MR
[63] M. D. McKay, R. J. Beckman, W. J. Conover, “A comparison of three methods for selecting values of input variables in the analysis of output from a computer code”, Technometrics, 21:2 (1979), 239–254 | MR
[64] R. Malouf, “A comparison of algorithms for maximum entropy parameter estimation”, Proceedings of the Sixth Conference on Natural Language Learning, 20 (2002), 49–55
[65] Pukelsheim F., “The three sigma rule”, The American Statistician, 48:2 (1994), 88–91 | DOI | MR
[66] W. Lee, S. Liu, H. Tembine, W. Li, S. Osher, “Controlling Propagation of epidemics via mean-field control”, SIAM J. Appl. Math., 81:1 (2021), 190–207 | DOI | MR | Zbl
[67] V. Petrakova, O. Krivorotko, “Mean field game for modeling of covid-19 spread”, Journal of Mathematical Analysis and Applications, 514:1 (2022), 126271 | DOI | MR | Zbl
[68] V. Petrakova, V. Shaydurov, MFG SIRV-D Model with Managed Rates of Epidemic Spread, in print
[69] A. Bensoussan, J. Frehse, Ph. Yam, Mean Field Games and Mean Field Type Control Theory, Springer, New York, 2013, 128 pp. | MR | Zbl
[70] A. Saltelli, S. Tarantola, K. S. Chan, “A quantitative model-independent method for global sensitivity analysis of model output”, Technometrics, 41 (1999), 39–56 | DOI
[71] R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek, J. H. Schaibly, “Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients”, I. Theory. The Journal of Chemical Physics, 59 (1973), 3873–3878 | DOI
[72] A. Saltelli, S. Tarantola, F. Campolongo, “Sensitivity Analysis as an Ingredient of Modeling”, Statistical Science, 15:4 (2000), 377–395 | MR
[73] J. H. Schaibly, K. E. Shuler, “Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. Part II. Applications”, Journal of Chemical Physics, 59 (1973), 3879–3888 | DOI
[74] H. Frey, S. Patil, “Identification and Review of Sensitivity Analysis Methods”, Risk Analysis, 22:3 (2002), 553–578 | DOI
[75] H. Tembine, “COVID-19: Data-Driven Mean-Field-TypeGame Perspective”, Games, 11:151 (2020), 107 | MR | Zbl