Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_1_a12, author = {I. V. Likhachev and V. S. Bystrov and S. V. Filippov}, title = {Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {251--266}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a12/} }
TY - JOUR AU - I. V. Likhachev AU - V. S. Bystrov AU - S. V. Filippov TI - Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 251 EP - 266 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a12/ LA - ru ID - MBB_2023_18_1_a12 ER -
%0 Journal Article %A I. V. Likhachev %A V. S. Bystrov %A S. V. Filippov %T Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 251-266 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a12/ %G ru %F MBB_2023_18_1_a12
I. V. Likhachev; V. S. Bystrov; S. V. Filippov. Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 251-266. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a12/
[1] D. Nepal, S. Kang, K. M. Adstedt, K. Kanhaiya, M. R. Bockstaller, L. C. Brinson, M. J. Buehler, P. V. Coveney, K. Dayal, J. A. El-Awady et al, “Hierarchically structured bioinspired nanocomposites: 1”, Nat. Mater., 22:1 (2023), 18–35 | DOI
[2] S. K. Pachahara, C. Subbalakshmi, R. Nagaraj, “Formation of Nanostructures by Peptides”, Curr Protein Pept Sci. 2017, 18:9, 920–938 | DOI
[3] P. Makam, E. Gazit, “Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology”, Chem. Soc. Rev., 47:10 (2018), 3406–3420 | DOI | MR
[4] C. Yuan, W. Ji, R. Xing, J. Li, E. Gazit, X. Yan, “Hierarchically oriented organization in supramolecular peptide crystals”, Nature Reviews Chemistry, 3:10 (2019), 567–588 | DOI
[5] D. M. Raymond, B. L. Nilsson, “Multicomponent peptide assemblies”, Chem. Soc. Rev., 47:10 (2018), 3659–3720 | DOI
[6] S. Scanlon, A. Aggeli, “Self-assembling peptide nanotubes”, Nano Today, 3:3 (2008), 22–30 | DOI
[7] V. S. Bystrov, P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, O. A. Zhulyabina, V. A. Tverdislov, “Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: Modeling of structure and properties”, Mathematical Biology and Bioinformatics, 14:1 (2019), 94–125 | DOI
[8] N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, I. Rousso, “Self Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures”, Nano Lett., 5:7 (2005), 1343–1346 | DOI
[9] J. Shklovsky, P. Beker, N. Amdursky, E. Gazit, G. Rosenman, “Bioinspired peptide nanotubes: Deposition technology and physical properties”, Materials Science and Engineering: B, 169:1 (2010), 62–66 | DOI
[10] M. Reches, E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes: 3”, Nature Nanotech., 1:3 (2006), 195–200 | DOI | MR
[11] Grbitz C. H., “Nanotube formation by hydrophobic dipeptides”, Chemistry, 7:23 (2001), 5153–5159 | 3.0.co;2-n class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[12] V. S. Bystrov, E. Paramonova, I. Bdikin, S. Kopyl, A. Heredia, R. C. Pullar, A. L. Kholkin, “BioFerroelectricity: Diphenylalanine Peptide Nanotubes Computational Modeling and Ferroelectric Properties at the Nanoscale”, Ferroelectrics, 440 (2012), 3–24 | DOI
[13] V. Bystrov, A. Sidorova, A. Lutsenko, D. Shpigun, E. Malyshko, A. Nuraeva, P. Zelenovskiy, S. Kopyl, A. Kholkin, “Modeling of Self-Assembled Peptide Nanotubes and Determination of Their Chirality Sign Based on Dipole Moment Calculations: 9”, Nanomaterials, 11:9 (2021), 2415 | DOI
[14] V. Bystrov, J. Coutinho, P. Zelenovskiy, A. Nuraeva, S. Kopyl, O. Zhulyabina, V. Tverdislov, “Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis: 10”, Nanomaterials, 10:10 (2020), 1999 | DOI
[15] V. S. Bystrov, S. V. Filippov, “Molecular modelling and computational studies of peptide diphenylalanine nanotubes, containing waters: structural and interactions analysis”, J. Mol. Model., 28:4 (2022), 81 | DOI
[16] CCDC, (accessed: 30.06.2023) https://www.ccdc.cam.ac.uk/
[17] P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, S. G. Arkhipov, S. G. Vasilev, V. S. Bystrov, D. A. Gruzdev, M. Waliczek, V. Svitlyk, V. Y. Shur, L. Mafra, A. L. Kholkin, “Chirality Dependent Growth of Self-Assembled Diphenylalanine Microtubes”, Crystal Growth and Design, 19:11 (2019), 6414–6421 | DOI
[18] V. A. Tverdislov, “Chirality as a primary switch of hierarchical levels in molecular biological systems”, Biophysics, 58:1 (2013), 128–132 | DOI
[19] P. Zelenovskiy, I. Kornev, S. Vasilev, A. Kholkin, “On the origin of the great rigidity of self-assembled diphenylalanine nanotubes”, Phys. Chem. Chem. Phys., 18:43 (2016), 29681–29685 | DOI
[20] K. Tao, P. Makam, R. Aizen, E. Gazit, “Self-assembling peptide semiconductors”, Science, 358:6365 (2017), 9756 | DOI
[21] N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, G. Rosenman, “Blue Luminescence Based on Quantum Confinement at Peptide Nanotubes”, Nano Lett., 9:9 (2009), 3111–3115 | DOI
[22] Z. Gan, X. Wu, X. Zhu, J. Shen, “Light-Induced Ferroelectricity in Bioinspired Self Assembled Diphenylalanine Nanotubes/Microtubes”, Angewandte Chemie International Edition, 52:7 (2013), 2055–2059 | DOI
[23] Z. Gan, X. Wu, J. Zhang, X. Zhu, P. K. Chu, “In situ thermal imaging and absolute temperature monitoring by luminescent diphenylalanine nanotubes”, Biomacromolecules, 14:6 (2013), 2112–2116 | DOI
[24] T. Nikitin, S. Kopyl, V. Ya. Shur, Y. V. Kopelevich, A. L. Kholkin, “Low-temperature photoluminescence in self-assembled diphenylalanine microtubes”, Physics Letters A, 380:18 (2016), 1658–1662 | DOI
[25] V. Nguyen, R. Zhu, K. Jenkins, R. Yang, “Self-assembly of diphenylalanine peptide with controlled polarization for power generation: 1”, Nat. Commun., 7:1 (2016), 13566 | DOI
[26] K. Jenkins, S. Kelly, V. Nguyen, Y. Wu, R. Yang, “Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators”, Nano Energy, 51 (2018), 317–323 | DOI
[27] S. Vasilev, P. Zelenovskiy, D. Vasileva, A. Slautina, V. Shur, A. Kholkin, “Piezoelectric properties of diphenylalanine microtubes prepared from the solution”, Journal of Physics and Chemistry of Solids, 93 (2016) | DOI
[28] V. S. Bystrov, “Photoferroelectricity in di-phenylalanine peptide nanotubes”, Computational Condensed Matter, 14 (2018) | DOI
[29] V. Bystrov, E. Paramonova, P. Zelenovskii, S. Kopyl, H. Shen, T. Lin, V. Fridkin, “Photoelectronic Properties of Chiral Self-Assembled Diphenylalanine Nanotubes: A Computational Study: 2”, Symmetry. 2023, 15, 504 | DOI
[30] I. V. Likhachev, V. S. Bystrov, “Assembly of a Phenylalanine Nanotube by the use of Molecular Dynamics Manipulator”, Math. Biol. Bioinf., 16:2 (2021), 244–255 | DOI
[31] I. Likhachev, N. Balabaev, V. Bystrov, E. Paramonova, L. Avakyan, N. Bulina, “Molecular Dynamics Simulation of the Thermal Behavior of Hydroxyapatite: 23”, Nanomaterials, 12:23 (2022), 4244 | DOI
[32] H. W. German, S. Uyaver, U. H.E. Hansmann, “Self-Assembly of Phenylalanine-Based Molecules”, J. Phys. Chem. A, 119:9 (2015), 1609–1615 | DOI
[33] L. Adler-Abramovich, L. Vaks, O. Carny, D. Trudler, A. Magno, A. Caflisch, D. Frenkel, E. Gazit, “Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria: 8”, Nat. Chem. Biol., 8:8 (2012), 701–706 | DOI
[34] Novosibirskii gosudarstvennyi universitet: issledovatelskii portal, (accessed: 30.06.2023) https://research.nsu.ru/ru/publications/chirality-dependent-growth-of-self-assembled-diphenylalanine-micr
[35] A. S. Lemak, N. K. Balabaev, “A comparison between collisional dynamics and brownian dynamics: 4”, Molecular Simulation, 15:4 (1995) | DOI
[36] A. S. Lemak, N. K. Balabaev, “Molecular dynamics simulation of a polymer chain in solution by collisional dynamics method: 15”, Journal of Computational Chemistry, 17:15 (1996) | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[37] Filippov S.V., Bystrov V.S., “Vizualno-differentsialnyi analiz strukturnykh osobennostei vnutrennikh polostei dvukh khiralnykh form difenilalaninovykh nanotrubok”, Biofizika, 65:3 (2020) | DOI
[38] Filippov S.V., Polozov R.V., Sivozhelezov V.S., “Vizualizatsiya prostranstvennykh struktur (bio)makromolekul v vide podobnykh gipsometricheskim kart”, Preprinty IPM im. M.V.Keldysha, 2019, 61, 14 pp. (data obrascheniya: 30.06.2023) https://library.keldysh.ru/preprint.asp?id=2019-61
[39] J. M. Wang, P. Cieplak, P. Kollman, How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?, J. Comput. Chem., 21 (1999), 1049 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[40] A. V. Glyakina, I. V. Likhachev, N. K. Balabaev, O. V. Galzitskaya, “Comparative mechanical unfolding studies of spectrin domains R15, R16 and R17”, J. Struct. Biol., 201:2 (2018), 162–170 | DOI
[41] I. V. Likhachev, N. K. Balabaev, “Trajectory Analyzer of Molecular Dynamics”, Math. Biol. Bioinf., 2:1 (2007), 120–129 | DOI
[42] I. V. Likhachev, N. K. Balabaev, O. V. Galzitskaya, “Available Instruments for Analyzing Molecular Dynamics Trajectories”, Open Biochem J., 10 (2016), 1–11 | DOI
[43] HyperChem, (accessed: 30.06.2023) http://www.hypercubeusa.com/?tabid=360
[44] PyMOL by Schrdinger, (accessed: 10.04.2023) https://pymol.org/2/
[45] V. A. Tverdislov, A. E. Sidorova, O. E. Bagrova, E. V. Belova, V. S. Bystrov, N. T. Levashova, A. O. Lutsenko, E. V. Semenova, D. K. Shpigun, “Chirality As a Symmetric Basis of Self-Organization of Biomacromolecules”, Biophysics, 67:5 (2022), 673–691 | DOI
[46] Filippov S.V., Polozov R.V., Sivozhelezov V.S., “Vizualizatsiya prostranstvennykh struktur (bio)makromolekul: postroenie «gipsometricheskikh» kart”, Informatsionnye tekhnologii i matematicheskoe modelirovanie, ITMM-2019, Materialy XVIII Mezhdunarodnoi konferentsii imeni A.F. Terpugova (26-30 iyunya 2019 g.), v. 1, Izd-vo NTL, Tomsk, 2019, 163–168
[47] S. V. Filippov, “Blender software platform as an environment for modeling objects and processes of science disciplines”, KIAM Prepr., 230 (2018), 1–42 | DOI
[48] Filippov S.V., “Metody raboty s dinamicheskimi molekulyarnymi modelyami, postroennymi v srede otkrytogo 3D redaktora Blender”, Doklady Mezhdunarodnoi konferentsii “Matematicheskaya biologiya i bioinformatika”, v. 7, ed. V.D. Lakhno, IMPB RAN, 2018, e43.1-e43.5 | DOI
[49] S. V. Filippov, “Method for the identification of atoms of macromolecules visualized in 3D editors”, KIAM Prepr., 2019, 97, 10 pp. | DOI | MR
[50] Blender 3.6 LTS: Simulation Nodes, better UV Packing, performance improvements, and much more! (accessed: 30.06.2023) https://www.blender.org/
[51] GTMIC GREYCTs Magic for Image Computing: A Full-Featured Open-Source Framework for Image Processing (accessed: 30.06.2023) https://gmic.eu/