Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 251-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper develops an approach to modeling the processes of self-assembly of complex molecular nanostructures by molecular dynamics methods using a molecular dynamics manipulator. Previously, this approach was considered using the example of assembling a phenylalanine helical nanotube from a linear set of chains of phenylalanine (F) molecules of different chirality: left-handed L-F and right-handed D-F chirality L-FF and D-FF. The process of self-assembly of dipeptide chains into helical structures of nanotubes is an imitation of applying certain forces to the existing initial linear structure in order to obtain the final structure of the same chemical composition, but with a different helical geometry. The PUMA-CUDA molecular dynamics simulation software package was used as the main software. Using this tool, one can investigate the formation of helical structures from a linear sequence of any amino acids. A comparative analysis of the structures of nanotubes obtained by assembling by molecular dynamics methods and by their experimental self-assembly was performed using the method of visual differential analysis. It has been established that the obtained data correspond to the law of the sign change of chirality of molecular helical structures with the complication of their hierarchical level of organization.
@article{MBB_2023_18_1_a12,
     author = {I. V. Likhachev and V. S. Bystrov and S. V. Filippov},
     title = {Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {251--266},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a12/}
}
TY  - JOUR
AU  - I. V. Likhachev
AU  - V. S. Bystrov
AU  - S. V. Filippov
TI  - Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 251
EP  - 266
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a12/
LA  - ru
ID  - MBB_2023_18_1_a12
ER  - 
%0 Journal Article
%A I. V. Likhachev
%A V. S. Bystrov
%A S. V. Filippov
%T Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 251-266
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a12/
%G ru
%F MBB_2023_18_1_a12
I. V. Likhachev; V. S. Bystrov; S. V. Filippov. Assembly of a diphenylalanine peptide nanotube by molecular dynamics methods. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 251-266. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a12/

[1] D. Nepal, S. Kang, K. M. Adstedt, K. Kanhaiya, M. R. Bockstaller, L. C. Brinson, M. J. Buehler, P. V. Coveney, K. Dayal, J. A. El-Awady et al, “Hierarchically structured bioinspired nanocomposites: 1”, Nat. Mater., 22:1 (2023), 18–35 | DOI

[2] S. K. Pachahara, C. Subbalakshmi, R. Nagaraj, “Formation of Nanostructures by Peptides”, Curr Protein Pept Sci. 2017, 18:9, 920–938 | DOI

[3] P. Makam, E. Gazit, “Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology”, Chem. Soc. Rev., 47:10 (2018), 3406–3420 | DOI | MR

[4] C. Yuan, W. Ji, R. Xing, J. Li, E. Gazit, X. Yan, “Hierarchically oriented organization in supramolecular peptide crystals”, Nature Reviews Chemistry, 3:10 (2019), 567–588 | DOI

[5] D. M. Raymond, B. L. Nilsson, “Multicomponent peptide assemblies”, Chem. Soc. Rev., 47:10 (2018), 3659–3720 | DOI

[6] S. Scanlon, A. Aggeli, “Self-assembling peptide nanotubes”, Nano Today, 3:3 (2008), 22–30 | DOI

[7] V. S. Bystrov, P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, O. A. Zhulyabina, V. A. Tverdislov, “Chiral peculiar properties of self-organization of diphenylalanine peptide nanotubes: Modeling of structure and properties”, Mathematical Biology and Bioinformatics, 14:1 (2019), 94–125 | DOI

[8] N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, I. Rousso, “Self Assembled Peptide Nanotubes Are Uniquely Rigid Bioinspired Supramolecular Structures”, Nano Lett., 5:7 (2005), 1343–1346 | DOI

[9] J. Shklovsky, P. Beker, N. Amdursky, E. Gazit, G. Rosenman, “Bioinspired peptide nanotubes: Deposition technology and physical properties”, Materials Science and Engineering: B, 169:1 (2010), 62–66 | DOI

[10] M. Reches, E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes: 3”, Nature Nanotech., 1:3 (2006), 195–200 | DOI | MR

[11] Grbitz C. H., “Nanotube formation by hydrophobic dipeptides”, Chemistry, 7:23 (2001), 5153–5159 | 3.0.co;2-n class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[12] V. S. Bystrov, E. Paramonova, I. Bdikin, S. Kopyl, A. Heredia, R. C. Pullar, A. L. Kholkin, “BioFerroelectricity: Diphenylalanine Peptide Nanotubes Computational Modeling and Ferroelectric Properties at the Nanoscale”, Ferroelectrics, 440 (2012), 3–24 | DOI

[13] V. Bystrov, A. Sidorova, A. Lutsenko, D. Shpigun, E. Malyshko, A. Nuraeva, P. Zelenovskiy, S. Kopyl, A. Kholkin, “Modeling of Self-Assembled Peptide Nanotubes and Determination of Their Chirality Sign Based on Dipole Moment Calculations: 9”, Nanomaterials, 11:9 (2021), 2415 | DOI

[14] V. Bystrov, J. Coutinho, P. Zelenovskiy, A. Nuraeva, S. Kopyl, O. Zhulyabina, V. Tverdislov, “Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis: 10”, Nanomaterials, 10:10 (2020), 1999 | DOI

[15] V. S. Bystrov, S. V. Filippov, “Molecular modelling and computational studies of peptide diphenylalanine nanotubes, containing waters: structural and interactions analysis”, J. Mol. Model., 28:4 (2022), 81 | DOI

[16] CCDC, (accessed: 30.06.2023) https://www.ccdc.cam.ac.uk/

[17] P. S. Zelenovskiy, A. S. Nuraeva, S. Kopyl, S. G. Arkhipov, S. G. Vasilev, V. S. Bystrov, D. A. Gruzdev, M. Waliczek, V. Svitlyk, V. Y. Shur, L. Mafra, A. L. Kholkin, “Chirality Dependent Growth of Self-Assembled Diphenylalanine Microtubes”, Crystal Growth and Design, 19:11 (2019), 6414–6421 | DOI

[18] V. A. Tverdislov, “Chirality as a primary switch of hierarchical levels in molecular biological systems”, Biophysics, 58:1 (2013), 128–132 | DOI

[19] P. Zelenovskiy, I. Kornev, S. Vasilev, A. Kholkin, “On the origin of the great rigidity of self-assembled diphenylalanine nanotubes”, Phys. Chem. Chem. Phys., 18:43 (2016), 29681–29685 | DOI

[20] K. Tao, P. Makam, R. Aizen, E. Gazit, “Self-assembling peptide semiconductors”, Science, 358:6365 (2017), 9756 | DOI

[21] N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, G. Rosenman, “Blue Luminescence Based on Quantum Confinement at Peptide Nanotubes”, Nano Lett., 9:9 (2009), 3111–3115 | DOI

[22] Z. Gan, X. Wu, X. Zhu, J. Shen, “Light-Induced Ferroelectricity in Bioinspired Self Assembled Diphenylalanine Nanotubes/Microtubes”, Angewandte Chemie International Edition, 52:7 (2013), 2055–2059 | DOI

[23] Z. Gan, X. Wu, J. Zhang, X. Zhu, P. K. Chu, “In situ thermal imaging and absolute temperature monitoring by luminescent diphenylalanine nanotubes”, Biomacromolecules, 14:6 (2013), 2112–2116 | DOI

[24] T. Nikitin, S. Kopyl, V. Ya. Shur, Y. V. Kopelevich, A. L. Kholkin, “Low-temperature photoluminescence in self-assembled diphenylalanine microtubes”, Physics Letters A, 380:18 (2016), 1658–1662 | DOI

[25] V. Nguyen, R. Zhu, K. Jenkins, R. Yang, “Self-assembly of diphenylalanine peptide with controlled polarization for power generation: 1”, Nat. Commun., 7:1 (2016), 13566 | DOI

[26] K. Jenkins, S. Kelly, V. Nguyen, Y. Wu, R. Yang, “Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators”, Nano Energy, 51 (2018), 317–323 | DOI

[27] S. Vasilev, P. Zelenovskiy, D. Vasileva, A. Slautina, V. Shur, A. Kholkin, “Piezoelectric properties of diphenylalanine microtubes prepared from the solution”, Journal of Physics and Chemistry of Solids, 93 (2016) | DOI

[28] V. S. Bystrov, “Photoferroelectricity in di-phenylalanine peptide nanotubes”, Computational Condensed Matter, 14 (2018) | DOI

[29] V. Bystrov, E. Paramonova, P. Zelenovskii, S. Kopyl, H. Shen, T. Lin, V. Fridkin, “Photoelectronic Properties of Chiral Self-Assembled Diphenylalanine Nanotubes: A Computational Study: 2”, Symmetry. 2023, 15, 504 | DOI

[30] I. V. Likhachev, V. S. Bystrov, “Assembly of a Phenylalanine Nanotube by the use of Molecular Dynamics Manipulator”, Math. Biol. Bioinf., 16:2 (2021), 244–255 | DOI

[31] I. Likhachev, N. Balabaev, V. Bystrov, E. Paramonova, L. Avakyan, N. Bulina, “Molecular Dynamics Simulation of the Thermal Behavior of Hydroxyapatite: 23”, Nanomaterials, 12:23 (2022), 4244 | DOI

[32] H. W. German, S. Uyaver, U. H.E. Hansmann, “Self-Assembly of Phenylalanine-Based Molecules”, J. Phys. Chem. A, 119:9 (2015), 1609–1615 | DOI

[33] L. Adler-Abramovich, L. Vaks, O. Carny, D. Trudler, A. Magno, A. Caflisch, D. Frenkel, E. Gazit, “Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria: 8”, Nat. Chem. Biol., 8:8 (2012), 701–706 | DOI

[34] Novosibirskii gosudarstvennyi universitet: issledovatelskii portal, (accessed: 30.06.2023) https://research.nsu.ru/ru/publications/chirality-dependent-growth-of-self-assembled-diphenylalanine-micr

[35] A. S. Lemak, N. K. Balabaev, “A comparison between collisional dynamics and brownian dynamics: 4”, Molecular Simulation, 15:4 (1995) | DOI

[36] A. S. Lemak, N. K. Balabaev, “Molecular dynamics simulation of a polymer chain in solution by collisional dynamics method: 15”, Journal of Computational Chemistry, 17:15 (1996) | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[37] Filippov S.V., Bystrov V.S., “Vizualno-differentsialnyi analiz strukturnykh osobennostei vnutrennikh polostei dvukh khiralnykh form difenilalaninovykh nanotrubok”, Biofizika, 65:3 (2020) | DOI

[38] Filippov S.V., Polozov R.V., Sivozhelezov V.S., “Vizualizatsiya prostranstvennykh struktur (bio)makromolekul v vide podobnykh gipsometricheskim kart”, Preprinty IPM im. M.V.Keldysha, 2019, 61, 14 pp. (data obrascheniya: 30.06.2023) https://library.keldysh.ru/preprint.asp?id=2019-61

[39] J. M. Wang, P. Cieplak, P. Kollman, How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?, J. Comput. Chem., 21 (1999), 1049 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[40] A. V. Glyakina, I. V. Likhachev, N. K. Balabaev, O. V. Galzitskaya, “Comparative mechanical unfolding studies of spectrin domains R15, R16 and R17”, J. Struct. Biol., 201:2 (2018), 162–170 | DOI

[41] I. V. Likhachev, N. K. Balabaev, “Trajectory Analyzer of Molecular Dynamics”, Math. Biol. Bioinf., 2:1 (2007), 120–129 | DOI

[42] I. V. Likhachev, N. K. Balabaev, O. V. Galzitskaya, “Available Instruments for Analyzing Molecular Dynamics Trajectories”, Open Biochem J., 10 (2016), 1–11 | DOI

[43] HyperChem, (accessed: 30.06.2023) http://www.hypercubeusa.com/?tabid=360

[44] PyMOL by Schrdinger, (accessed: 10.04.2023) https://pymol.org/2/

[45] V. A. Tverdislov, A. E. Sidorova, O. E. Bagrova, E. V. Belova, V. S. Bystrov, N. T. Levashova, A. O. Lutsenko, E. V. Semenova, D. K. Shpigun, “Chirality As a Symmetric Basis of Self-Organization of Biomacromolecules”, Biophysics, 67:5 (2022), 673–691 | DOI

[46] Filippov S.V., Polozov R.V., Sivozhelezov V.S., “Vizualizatsiya prostranstvennykh struktur (bio)makromolekul: postroenie «gipsometricheskikh» kart”, Informatsionnye tekhnologii i matematicheskoe modelirovanie, ITMM-2019, Materialy XVIII Mezhdunarodnoi konferentsii imeni A.F. Terpugova (26-30 iyunya 2019 g.), v. 1, Izd-vo NTL, Tomsk, 2019, 163–168

[47] S. V. Filippov, “Blender software platform as an environment for modeling objects and processes of science disciplines”, KIAM Prepr., 230 (2018), 1–42 | DOI

[48] Filippov S.V., “Metody raboty s dinamicheskimi molekulyarnymi modelyami, postroennymi v srede otkrytogo 3D redaktora Blender”, Doklady Mezhdunarodnoi konferentsii “Matematicheskaya biologiya i bioinformatika”, v. 7, ed. V.D. Lakhno, IMPB RAN, 2018, e43.1-e43.5 | DOI

[49] S. V. Filippov, “Method for the identification of atoms of macromolecules visualized in 3D editors”, KIAM Prepr., 2019, 97, 10 pp. | DOI | MR

[50] Blender 3.6 LTS: Simulation Nodes, better UV Packing, performance improvements, and much more! (accessed: 30.06.2023) https://www.blender.org/

[51] GTMIC GREYCTs Magic for Image Computing: A Full-Featured Open-Source Framework for Image Processing (accessed: 30.06.2023) https://gmic.eu/