Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2023_18_1_a10, author = {Y. Shuai and A. G. Maslovskaya and C. Kuttler}, title = {Modeling of bacterial communication in the extended range of population dynamics}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {89--104}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a10/} }
TY - JOUR AU - Y. Shuai AU - A. G. Maslovskaya AU - C. Kuttler TI - Modeling of bacterial communication in the extended range of population dynamics JO - Matematičeskaâ biologiâ i bioinformatika PY - 2023 SP - 89 EP - 104 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a10/ LA - en ID - MBB_2023_18_1_a10 ER -
%0 Journal Article %A Y. Shuai %A A. G. Maslovskaya %A C. Kuttler %T Modeling of bacterial communication in the extended range of population dynamics %J Matematičeskaâ biologiâ i bioinformatika %D 2023 %P 89-104 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a10/ %G en %F MBB_2023_18_1_a10
Y. Shuai; A. G. Maslovskaya; C. Kuttler. Modeling of bacterial communication in the extended range of population dynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 89-104. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a10/
[1] N. A. Whitehead, A. M.L. Barnard, H. Slater, N. J.L. Simpson, G. P.C. Salmond, “Quorum sensing in Gram-negative bacteria”, FEMS Microbiol. Rev, 25 (2001), 365–404 | DOI
[2] P. Williams, K. Winzer, W. C. Chan, M. Camara, “Look who's talking: communication and quorum sensing in the bacterial world”, Phil. Trans. R. Soc. B, 362 (2007), 1119–1134 | DOI
[3] S. T. Rutherford, B. L. Bassler, “Bacterial quorum sensing: its role in virulence and possibilities for its control”, Cold Spring Harb. Perspect. Med., 2 (2012), a012427 | DOI
[4] M. Fernandez, M. Porcel, J. de la Torre, M. A. Molina-Henares, “Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains”, Frontiers in Microbiology, 6:11 (2015), 871 | DOI
[5] S. James, P. Nilsson, G. James, S. Kjelleberg, T. Fagerstrom, “Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation”, J. Mol. Biol., 296:4 (2000), 1127–1137 | DOI
[6] C. Kuttler, B. A. Hense, “The interplay of two quorum sensing regulation systems of Vibrio fischeri”, J. Theor. Biol, 251:1 (2008), 167–180 | DOI | MR | Zbl
[7] K. Anguige, J. R. King, J. P. Ward, P. Williams, “Mathematical modelling of therapies targeted at bacterial quorum sensing”, Math. Biosci, 192:1 (2004), 39–83 | DOI | MR | Zbl
[8] J. Perez-Velazquez, M. Golgeli, R. Garcia-Contreras, “Mathematical modelling of bacterial quorum sensing: a review”, Bull. Math. Biol, 76 (2016), 1585–1639 | DOI | MR
[9] D. Karlsson, S. Karlsson, E. Gustafsson, B. H. Normark, P. Nilsson, “Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae”, BioSystems, 90:1 (2007), 211–223 | DOI
[10] J. Li, L. Wang, Y. Hashimoto, C. Y. Tsao, T. K. Wood, J. J. Valdes, E. Zafiriou, W. E. Bentley, “A stochastic model of Escherichia coli ai-2 quorum signal circuit reveals alternative synthesis pathways”, Mol. Syst. Biol, 2 (2006), 67–78 | DOI
[11] D. L. Chopp, D. L. Chopp, M. J. Kirisits, B. Moran, M. R. Parsek, “The dependence of quorum sensing on the depth of a growing biofilm”, Bull. Math. Biol, 65:6 (2003), 1053–1079 | DOI | Zbl
[12] J. D. Dockery, J. P. Keener, “A mathematical model for quorum sensing in Pseudomonas aeruginosa”, Bull. Math. Biol, 63:1 (2000), 95–116 | DOI
[13] J. P. Ward, J. R. King, A. J. Koerber, P. Williams, J. M. Croft, R. E. Sockett, “Mathematical modelling of quorum sensing in bacteria”, IMA J. Math. Appl. Med. Biol, 18:3 (2001), 263–292 | DOI | Zbl
[14] J. Muller, C. Kuttler, B. A. Hense, M. Rothballer, A. Hartmann, “Cell-cell communication by quorum sensing and dimension-reduction”, J. Math. Biol., 53 (2006), 672–702 | DOI | MR | Zbl
[15] A. B. Goryachev, “Understanding bacterial cell-cell communication with computational modelling”, Chem. Rev, 111:1 (2011), 238–250 | DOI
[16] B. A. Hense, M. Schuster, “Core principles of bacterial autoinducer systems”, Microbiol. Mol. Biol. Rev, 79:1 (2015), 153–169 | DOI
[17] M. V. Barbarossa, C. Kuttler, A. Fekete, M. Rothballer, “A delay model for quorum sensing of Pseudomonas putida”, Biosystems, 102:23 (2010), 148–156 | DOI
[18] A. Fekete, C. Kuttler, M. Rothaller, B. A. Hense, D. Fischer, K. Buddrus-Schiemann, M. Lucio, J. Muller, P. Schmitt-Kopplin, A. Hartmann, “Dynamic regulation of N-acyl homoserine lactone production and degradation in Pseudomonas putida IsoF”, FEMS Microbiol. Ecol, 72 (2010), 22–34 | DOI
[19] E. Alpkvist, C. Picioreanu, M. C.M. van Loosdrecht, A. Heyden, “Three-dimensional biofilm model with individual cells and continuum EPS matrix”, Biotechnol. Bioeng, 94 (2001), 961–979 | DOI
[20] C. Picioreanu, J. U. Kreft, M. C.M. van Loosdrecht, “Particle-based multidimensional multispecies biofilm model”, Applied and Environmental Microbiology, 70:5 (2004), 3024–3064 | DOI
[21] D. Rodriguez, A. Carpio, B. Einarsson, “A cellular automata model for biofilm growth”, Blucher Mechanical Engineering Proceedings, 10th World Congress on Computational Mechanics, v. 1, 2014, 409–421 | DOI | MR
[22] D. L. Chopp, M. J. Kirisits, B. Moran, M. R. Parsek, “The dependence of quorum sensing on the depth of a growing biofilm”, Bull. Math. Biol, 65 (2002), 1053–1079 | DOI
[23] J. P. Ward, J. R. King, A. J. Koerber, J. M. Croft, R. E. Sockett, P. Williams, “Early development and quorum sensing in bacterial biofilms”, J. Math. Biol, 47 (2003), 23–55 | DOI | MR | Zbl
[24] M. R. Frederick, C. Kuttler, B. A. Hense, H. J. Eberl, “A mathematical model of quorum sensing regulated eps production in biofilm communities”, Theor. Biol. Med. Model, 8 (2011), 8 | DOI
[25] J. Ward, “Mathematical modeling of quorum-sensing control in biofilms”, Control of biofilm infections by signal manipulation, Springer Series on Biofilms, 2, ed. Balaban N., Springer, Berlin, 2008, 79–108 | DOI
[26] Kuttler Ch., “Chapter 4-Reaction-diffusion equations and their application on bacterial communication”, Handbook of Statistics, 37, 2017, 55–91 | DOI | MR
[27] Ch. Kuttler, A. Maslovskaya, “Computer simulation of communication in bacterial populations under external impact of signal-degrading enzymes”, Proc. of the CEUR “Workshop Proceedings”, 2783, 2020, 163–179
[28] A. Maslovskaya, C. Kuttler, A. Chebotarev, A. Kovtanyuk, “Optimal multiplicative control of bacterial quorum sensing under external enzyme impact”, Math. Model. Nat. Phenom, 17:29 (2022) | DOI | MR | Zbl
[29] C. Kuttler, A. Maslovskaya, “Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing”, Applied Mathematical Modelling, 93 (2021), 360–375 | DOI | MR | Zbl
[30] C. Kuttler, A. Maslovskaya, “Computer-assisted modeling of quorum sensing in bacterial population exposed to antibiotics”, Front. Appl. Math. Stat., 8 (2022), 951783 | DOI
[31] J. M.N. Llorens, A. Tormo, E. Martinez-Garcia, “Stationary phase in gram-negative bacteria”, FEMS Microbiol. Rev., 2010, 476–495 | DOI
[32] M. S. Munna, Z. Zeba, R. Noor, “Influence of temperature on the growth of Pseudomonas putida”, Stamford Journal of Microbiology, 5 (2015), 9–12 | DOI
[33] M. Peleg, M. G. Corradini, “Microbial growth curves: what the models tell us and what they cannot”, Critical Reviews in Food Science and Nutrition, 51:10 (2011), 917 | DOI
[34] L. A. Pazos-Rojas, L. C. Munoz-Arenas, O. Rodr??guez-Andrade, L. E. López-Cruz, O. López Ortega, F. Lopes-Olivares, S. Luna-Suarez, A. Baez, Y. E. Morales-Garcia, V. Quintero-Hernandez et al, “Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy”, PLoS ONE, 14:7 (2019), e0219554 | DOI
[35] P. Silke, P. Oberhettinger, L. Schuele, A. Dinkelacker, W. Vogel, D. Dorfel, D. Bezdan, S. Ossowski, M. Marschal, J. Liese, M. Willmann, “Genomic characterization of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa”, BMC Genomics, 18 (2017), 859 | DOI | MR
[36] N. Wai-Leung, B. L. Bassler, “Bacterial quorum-sensing network architectures”, Annu. Rev. Genet., 43 (2009), 197–222 | DOI
[37] L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010, 749 pp. | MR | Zbl
[38] D. Brown, “Linking molecular and population processes in mathematical models of quorum sensing”, Bull. Math. Biol, 5 (2013), 1813–1839 | DOI | MR
[39] P. Pletnev, I. Osterman, P. Sergiev, A. Bogdanov, O. Dontsova, “Survival guide: Escherichia coli in the stationary phase”, Acta Naturae, 7 (2015), 22–33 | DOI
[40] Introduction to COMSOL Multiphysics, (accessed 28.03.2023) https://www.comsol.com
[41] K. Buddrus-Schiemann, M. Rieger, M. Muhlbauer, M. V. Barbarossa, C. Kuttler, A. B. Hense, M. Rothballer, J. Uhl, J. R. Fonseca, P. Schmitt-Kopplin et al, “Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models”, Anal. Bioanal. Chem, 406 (2014), 6373–6383 | DOI