Modeling of bacterial communication in the extended range of population dynamics
Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 89-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

“Quorum sensing” as a special kind of communication in bacterial populations can be analyzed by means of methods and techniques of mathematical modeling and computer simulation. In the present study, a modification of a deterministic mathematical model of bacterial quorum sensing is proposed, taking into account the law of multiphase population dynamics. The mathematical model is formalized by an initial-boundary value problem for a system of semilinear reaction-diffusion partial differential equations. The equations include generation terms in view of changes in the biomass density. The model describes space-time dynamics of concentrations of special substances (signaling agents and Lactonase enzymes) that characterize the quorum sensing in Gram-negative bacteria. The problem is solved by means of the finite element method using the COMSOL Multiphysics platform. Computational experiments are performed to estimate concentrations of key substances characterizing quorum sensing for Pseudomonas putida bacterial strains in an expanded range of population dynamics.
@article{MBB_2023_18_1_a10,
     author = {Y. Shuai and A. G. Maslovskaya and C. Kuttler},
     title = {Modeling of bacterial communication in the extended range of population dynamics},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {89--104},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a10/}
}
TY  - JOUR
AU  - Y. Shuai
AU  - A. G. Maslovskaya
AU  - C. Kuttler
TI  - Modeling of bacterial communication in the extended range of population dynamics
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2023
SP  - 89
EP  - 104
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a10/
LA  - en
ID  - MBB_2023_18_1_a10
ER  - 
%0 Journal Article
%A Y. Shuai
%A A. G. Maslovskaya
%A C. Kuttler
%T Modeling of bacterial communication in the extended range of population dynamics
%J Matematičeskaâ biologiâ i bioinformatika
%D 2023
%P 89-104
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a10/
%G en
%F MBB_2023_18_1_a10
Y. Shuai; A. G. Maslovskaya; C. Kuttler. Modeling of bacterial communication in the extended range of population dynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 18 (2023) no. 1, pp. 89-104. http://geodesic.mathdoc.fr/item/MBB_2023_18_1_a10/

[1] N. A. Whitehead, A. M.L. Barnard, H. Slater, N. J.L. Simpson, G. P.C. Salmond, “Quorum sensing in Gram-negative bacteria”, FEMS Microbiol. Rev, 25 (2001), 365–404 | DOI

[2] P. Williams, K. Winzer, W. C. Chan, M. Camara, “Look who's talking: communication and quorum sensing in the bacterial world”, Phil. Trans. R. Soc. B, 362 (2007), 1119–1134 | DOI

[3] S. T. Rutherford, B. L. Bassler, “Bacterial quorum sensing: its role in virulence and possibilities for its control”, Cold Spring Harb. Perspect. Med., 2 (2012), a012427 | DOI

[4] M. Fernandez, M. Porcel, J. de la Torre, M. A. Molina-Henares, “Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains”, Frontiers in Microbiology, 6:11 (2015), 871 | DOI

[5] S. James, P. Nilsson, G. James, S. Kjelleberg, T. Fagerstrom, “Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation”, J. Mol. Biol., 296:4 (2000), 1127–1137 | DOI

[6] C. Kuttler, B. A. Hense, “The interplay of two quorum sensing regulation systems of Vibrio fischeri”, J. Theor. Biol, 251:1 (2008), 167–180 | DOI | MR | Zbl

[7] K. Anguige, J. R. King, J. P. Ward, P. Williams, “Mathematical modelling of therapies targeted at bacterial quorum sensing”, Math. Biosci, 192:1 (2004), 39–83 | DOI | MR | Zbl

[8] J. Perez-Velazquez, M. Golgeli, R. Garcia-Contreras, “Mathematical modelling of bacterial quorum sensing: a review”, Bull. Math. Biol, 76 (2016), 1585–1639 | DOI | MR

[9] D. Karlsson, S. Karlsson, E. Gustafsson, B. H. Normark, P. Nilsson, “Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae”, BioSystems, 90:1 (2007), 211–223 | DOI

[10] J. Li, L. Wang, Y. Hashimoto, C. Y. Tsao, T. K. Wood, J. J. Valdes, E. Zafiriou, W. E. Bentley, “A stochastic model of Escherichia coli ai-2 quorum signal circuit reveals alternative synthesis pathways”, Mol. Syst. Biol, 2 (2006), 67–78 | DOI

[11] D. L. Chopp, D. L. Chopp, M. J. Kirisits, B. Moran, M. R. Parsek, “The dependence of quorum sensing on the depth of a growing biofilm”, Bull. Math. Biol, 65:6 (2003), 1053–1079 | DOI | Zbl

[12] J. D. Dockery, J. P. Keener, “A mathematical model for quorum sensing in Pseudomonas aeruginosa”, Bull. Math. Biol, 63:1 (2000), 95–116 | DOI

[13] J. P. Ward, J. R. King, A. J. Koerber, P. Williams, J. M. Croft, R. E. Sockett, “Mathematical modelling of quorum sensing in bacteria”, IMA J. Math. Appl. Med. Biol, 18:3 (2001), 263–292 | DOI | Zbl

[14] J. Muller, C. Kuttler, B. A. Hense, M. Rothballer, A. Hartmann, “Cell-cell communication by quorum sensing and dimension-reduction”, J. Math. Biol., 53 (2006), 672–702 | DOI | MR | Zbl

[15] A. B. Goryachev, “Understanding bacterial cell-cell communication with computational modelling”, Chem. Rev, 111:1 (2011), 238–250 | DOI

[16] B. A. Hense, M. Schuster, “Core principles of bacterial autoinducer systems”, Microbiol. Mol. Biol. Rev, 79:1 (2015), 153–169 | DOI

[17] M. V. Barbarossa, C. Kuttler, A. Fekete, M. Rothballer, “A delay model for quorum sensing of Pseudomonas putida”, Biosystems, 102:23 (2010), 148–156 | DOI

[18] A. Fekete, C. Kuttler, M. Rothaller, B. A. Hense, D. Fischer, K. Buddrus-Schiemann, M. Lucio, J. Muller, P. Schmitt-Kopplin, A. Hartmann, “Dynamic regulation of N-acyl homoserine lactone production and degradation in Pseudomonas putida IsoF”, FEMS Microbiol. Ecol, 72 (2010), 22–34 | DOI

[19] E. Alpkvist, C. Picioreanu, M. C.M. van Loosdrecht, A. Heyden, “Three-dimensional biofilm model with individual cells and continuum EPS matrix”, Biotechnol. Bioeng, 94 (2001), 961–979 | DOI

[20] C. Picioreanu, J. U. Kreft, M. C.M. van Loosdrecht, “Particle-based multidimensional multispecies biofilm model”, Applied and Environmental Microbiology, 70:5 (2004), 3024–3064 | DOI

[21] D. Rodriguez, A. Carpio, B. Einarsson, “A cellular automata model for biofilm growth”, Blucher Mechanical Engineering Proceedings, 10th World Congress on Computational Mechanics, v. 1, 2014, 409–421 | DOI | MR

[22] D. L. Chopp, M. J. Kirisits, B. Moran, M. R. Parsek, “The dependence of quorum sensing on the depth of a growing biofilm”, Bull. Math. Biol, 65 (2002), 1053–1079 | DOI

[23] J. P. Ward, J. R. King, A. J. Koerber, J. M. Croft, R. E. Sockett, P. Williams, “Early development and quorum sensing in bacterial biofilms”, J. Math. Biol, 47 (2003), 23–55 | DOI | MR | Zbl

[24] M. R. Frederick, C. Kuttler, B. A. Hense, H. J. Eberl, “A mathematical model of quorum sensing regulated eps production in biofilm communities”, Theor. Biol. Med. Model, 8 (2011), 8 | DOI

[25] J. Ward, “Mathematical modeling of quorum-sensing control in biofilms”, Control of biofilm infections by signal manipulation, Springer Series on Biofilms, 2, ed. Balaban N., Springer, Berlin, 2008, 79–108 | DOI

[26] Kuttler Ch., “Chapter 4-Reaction-diffusion equations and their application on bacterial communication”, Handbook of Statistics, 37, 2017, 55–91 | DOI | MR

[27] Ch. Kuttler, A. Maslovskaya, “Computer simulation of communication in bacterial populations under external impact of signal-degrading enzymes”, Proc. of the CEUR “Workshop Proceedings”, 2783, 2020, 163–179

[28] A. Maslovskaya, C. Kuttler, A. Chebotarev, A. Kovtanyuk, “Optimal multiplicative control of bacterial quorum sensing under external enzyme impact”, Math. Model. Nat. Phenom, 17:29 (2022) | DOI | MR | Zbl

[29] C. Kuttler, A. Maslovskaya, “Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing”, Applied Mathematical Modelling, 93 (2021), 360–375 | DOI | MR | Zbl

[30] C. Kuttler, A. Maslovskaya, “Computer-assisted modeling of quorum sensing in bacterial population exposed to antibiotics”, Front. Appl. Math. Stat., 8 (2022), 951783 | DOI

[31] J. M.N. Llorens, A. Tormo, E. Martinez-Garcia, “Stationary phase in gram-negative bacteria”, FEMS Microbiol. Rev., 2010, 476–495 | DOI

[32] M. S. Munna, Z. Zeba, R. Noor, “Influence of temperature on the growth of Pseudomonas putida”, Stamford Journal of Microbiology, 5 (2015), 9–12 | DOI

[33] M. Peleg, M. G. Corradini, “Microbial growth curves: what the models tell us and what they cannot”, Critical Reviews in Food Science and Nutrition, 51:10 (2011), 917 | DOI

[34] L. A. Pazos-Rojas, L. C. Munoz-Arenas, O. Rodr??guez-Andrade, L. E. López-Cruz, O. López Ortega, F. Lopes-Olivares, S. Luna-Suarez, A. Baez, Y. E. Morales-Garcia, V. Quintero-Hernandez et al, “Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy”, PLoS ONE, 14:7 (2019), e0219554 | DOI

[35] P. Silke, P. Oberhettinger, L. Schuele, A. Dinkelacker, W. Vogel, D. Dorfel, D. Bezdan, S. Ossowski, M. Marschal, J. Liese, M. Willmann, “Genomic characterization of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa”, BMC Genomics, 18 (2017), 859 | DOI | MR

[36] N. Wai-Leung, B. L. Bassler, “Bacterial quorum-sensing network architectures”, Annu. Rev. Genet., 43 (2009), 197–222 | DOI

[37] L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010, 749 pp. | MR | Zbl

[38] D. Brown, “Linking molecular and population processes in mathematical models of quorum sensing”, Bull. Math. Biol, 5 (2013), 1813–1839 | DOI | MR

[39] P. Pletnev, I. Osterman, P. Sergiev, A. Bogdanov, O. Dontsova, “Survival guide: Escherichia coli in the stationary phase”, Acta Naturae, 7 (2015), 22–33 | DOI

[40] Introduction to COMSOL Multiphysics, (accessed 28.03.2023) https://www.comsol.com

[41] K. Buddrus-Schiemann, M. Rieger, M. Muhlbauer, M. V. Barbarossa, C. Kuttler, A. B. Hense, M. Rothballer, J. Uhl, J. R. Fonseca, P. Schmitt-Kopplin et al, “Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models”, Anal. Bioanal. Chem, 406 (2014), 6373–6383 | DOI