The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022), pp. t42-t52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the motion of a polaron in a polynucleotide chain in an external electric field is considered. The calculations performed show that Bloch oscillations arising in the course of the polaron oscillatory motion along the chain do not completely disappear when the polaron motion along the chain becomes uniform. When the polaron moves uniformly along the chain, Bloch oscillations are also observed, although in a slightly different form. It is shown that the shape of the electron density distribution in a polaron during its stationary motion in a constant electric field takes an explicit structure. In this case, such characteristics of Bloch oscillations as the period of Bloch oscillations and the maximum Bloch amplitude demonstrate low-density components of the polaron.
@article{MBB_2022_17_a3,
     author = {A. N. Korshounova and V. D. Lakhno},
     title = {The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t42--t52},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_a3/}
}
TY  - JOUR
AU  - A. N. Korshounova
AU  - V. D. Lakhno
TI  - The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - t42
EP  - t52
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_a3/
LA  - en
ID  - MBB_2022_17_a3
ER  - 
%0 Journal Article
%A A. N. Korshounova
%A V. D. Lakhno
%T The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P t42-t52
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_a3/
%G en
%F MBB_2022_17_a3
A. N. Korshounova; V. D. Lakhno. The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022), pp. t42-t52. http://geodesic.mathdoc.fr/item/MBB_2022_17_a3/

[1] T. Holstein, “Studies of polaron motion. Part I: The molecular-crystal model”, Annals of Phys., 8 (1959), 325–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90002-8'>10.1016/0003-4916(59)90002-8</ext-link>

[2] T. Holstein, “Studies of polaron motion. Part II: The “small” polaron”, Annals of Phys., 8 (1959), 343–389 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90003-X'>10.1016/0003-4916(59)90003-X</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>

[3] D. Hennig, E. B. Starikov, J. F.R. Archilla, F. Palmero, “Charge Transport in Poly(dG)-Poly(dC) and Poly(dA)-Poly(dT) DNA Polymers”, Journal of Biological Physics, 30:3 (2004), 227–238 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/B:JOBP.0000046721.92623.a9'>10.1023/B:JOBP.0000046721.92623.a9</ext-link>

[4] Z. Huang, M. Hoshina, H. Ishihara, Y. Zhao, “Transient dynamics of super Bloch oscillations of a one dimensional Holstein polaron under the influence of an external AC electric field”, Annalen der Physik, 529 (2017), 1600367 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/andp.201600367'>10.1002/andp.201600367</ext-link>

[5] D. Hennig, A. D. Burbanks, A. H. Osbaldestin, “Directed current in the Holstein system”, Phys. Rev. E, 83 (2011), 031121 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.83.031121'>10.1103/PhysRevE.83.031121</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2788228'>2788228</ext-link>

[6] L. V. Yakushevich, V. N. Balashova, F. K. Zakiryanov, “On the DNA Kink Motion Under the Action of Constant Torque”, Math. Biol. Bioinf., 11:1 (2016), 81–90 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.81'>10.17537/2016.11.81</ext-link>

[7] E. B. Starikov, J. P. Lewis, O. F. Sankey, “Base sequence effects on charge carrier generation in DNA: a theoretical study”, International Journal of Modern Physics B, 19:29 (2005), 4331–4357 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0217979205032802'>10.1142/S0217979205032802</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1076.92001'>1076.92001</ext-link>

[8] A. S. Davydov, Solitons in Molecular systems, Reidel Publ. Comp., Boston, USA, 1985, 413 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-94-017-3025-9'>10.1007/978-94-017-3025-9</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=823982'>823982</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0597.35001'>0597.35001</ext-link>

[9] Scott A. C., “Davydov's soliton”, Phys. Rep., 217:1 (1992), 1–67 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0370-1573(92)90093-F'>10.1016/0370-1573(92)90093-F</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1031421'>1031421</ext-link>

[10] P. J. De Pablo, F. Moreno-Herrero, J. Colchero, J. Gomez Herrero, P. Herrero, A. M. Baro, P. Ordejon, J. M. Soler, E. Artacho, “Absence of dc-Conductivity in $\lambda$-DNA”, Phys. Rev. Lett., 85 (2000), 4992–4995 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.85.4992'>10.1103/PhysRevLett.85.4992</ext-link>

[11] D. Porath, A. Bezryadin, S. De Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules”, Nature, 403 (2000), 635–638 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35001029'>10.1038/35001029</ext-link>

[12] K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, Kim Jinhee, J. J. Kim, H. Y. Lee, T. Kawai, Choi Han Yong, “Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules”, Phys. Rev. Lett., 87 (2001), 198102 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.87.198102'>10.1103/PhysRevLett.87.198102</ext-link>

[13] A. Y. Kasumov, M. Kociak, S. Gue?ron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, “Proximity-Induced Superconductivity in DNA”, Science, 291:5502 (2001), 280–282 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.291.5502.280'>10.1126/science.291.5502.280</ext-link>

[14] A. Chepeliaskii, D. Klinov, A. Kasumov, S. Gueron, O. Pietrement, S. Lyonnais, H. Bouchiat, “Conduction of DNA molecules attached to a disconnected array of metallic Ga nanoparticles”, New J. Phys., 13 (2011), 063046 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1367-2630/13/6/063046'>10.1088/1367-2630/13/6/063046</ext-link>

[15] D. Porath, G. Cuniberti, R. Di Felice, “Charge transport in DNA-based devices”, Top. Curr. Chem., 237 (2004), 183–227 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/b94477'>10.1007/b94477</ext-link>

[16] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, M. G. Velarde, “Discrete-breather-assisted charge transport along DNA-like molecular wires”, Phys. Rev. E, 100 (2019), 052203 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.100.052203'>10.1103/PhysRevE.100.052203</ext-link>

[17] R. G. Eudres, D. L. Cox, R. R.P. Singh, “Colloquium: The quest for high-conductance DNA”, Rev. Mod. Phys., 76 (2004), 195–214 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/RevModPhys.76.195'>10.1103/RevModPhys.76.195</ext-link>

[18] V. D. Lakhno, “DNA nanobioelectronics”, Int. Quantum. Chem., 108 (2008), 1970–1981 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.21717'>10.1002/qua.21717</ext-link>

[19] A. Offenhausser, R. Rinald (eds.), Nanobioelectronics for Electronics, Biology and Medicine, Springer, N.Y., 2009

[20] Taniguchi M., Kawai T., “DNA electronics”, Physica E, 33 (2006), 1–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2006.01.005'>10.1016/j.physe.2006.01.005</ext-link>

[21] Conwell E.M., Rakhmanova S.V., “Polarons in DNA”, Proc. Natl. Acad. Sci., 97 (2000), 4556-4560 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.050074497'>10.1073/pnas.050074497</ext-link>

[22] K. Voulgarakis Nikolaos, “The effect of thermal fluctuations on Holstein polaron dynamics in electric Field”, Physica B, 519 (2017), 5–20 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physb.2017.04.030'>10.1016/j.physb.2017.04.030</ext-link>

[23] N. S. Fialko, V. D. Lakhno, “Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations”, Math. Biol. Bioinf., 14:2 (2019), 406–419 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.406'>10.17537/2019.14.406</ext-link>

[24] M. A. Fuentes, P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, V. M. Kenkre, Yu. B. Gaididei, “Multipeaked polarons in soft potentials”, Phys. Rev. E, 70 (2004), 025601(R) <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.70.025601'>10.1103/PhysRevE.70.025601</ext-link>

[25] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “Polaron normal modes in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 68 (2003), 174304 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.68.174304'>10.1103/PhysRevB.68.174304</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1975723'>1975723</ext-link>

[26] Astakhova T. Yu., Vinogradov G. A., “Polyaron v elektricheskom pole i kolebatelnyi spektr poliatsetilena”, Matematicheskaya biologiya i bioinformatika, 14:1 (2019), 150–159 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.150'>10.17537/2019.14.150</ext-link>

[27] A. A. Voityuk, N. Rosch, M. Bixon, J. Jortner, “Electronic Coupling for Charge Transfer and Transport in DNA”, J. Phys. Chem. B, 104:41 (2000), 9740–9745 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp001109w'>10.1021/jp001109w</ext-link>

[28] J. Jortner, M. Bixon, A. A. Voityuk, N. J. Rosch, “Superexchange Mediated Charge Hopping in DNA”, Phys. Chem. A, 106 (2002), 7599–7606 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp014232b'>10.1021/jp014232b</ext-link>

[29] V. D. Lakhno, A. N. Korshunova, “Formation of stationary electronic states in finite homogeneous molecular chains”, Mathematical biology and bioinformatics, 5:1 (2010), 1–29 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2010.5.1'>10.17537/2010.5.1</ext-link>

[30] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2014.02.025'>10.1016/j.physe.2014.02.025</ext-link>

[31] V. D. Lakhno, “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys., 26 (2000), 133–147 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1005275211233'>10.1023/A:1005275211233</ext-link>

[32] A. N. Korshunova, V. D. Lakhno, “Simulation of the Stationary and Nonstationary Charge Transfer Conditions in a Uniform Holstein Chain Placed in Constant Electric Field”, Technical Physics, 63:9 (2018), 1270–1276 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1063784218090086'>10.1134/S1063784218090086</ext-link>

[33] V. D. Lakhno, “Davydov's solitons in a homogeneous nucleotide chain”, Int. J. Quant. Chem., 110 (2010), 127–137 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.22264'>10.1002/qua.22264</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=913530'>913530</ext-link>

[34] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Eur. Phys. J. B, 55 (2007), 85–87 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2007-00045-3'>10.1140/epjb/e2007-00045-3</ext-link>

[35] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Euro. Phys. J. B, 79 (2011), 147–151 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2010-10565-2'>10.1140/epjb/e2010-10565-2</ext-link>