Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_a3, author = {A. N. Korshounova and V. D. Lakhno}, title = {The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t42--t52}, publisher = {mathdoc}, volume = {17}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_a3/} }
TY - JOUR AU - A. N. Korshounova AU - V. D. Lakhno TI - The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - t42 EP - t52 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_a3/ LA - en ID - MBB_2022_17_a3 ER -
%0 Journal Article %A A. N. Korshounova %A V. D. Lakhno %T The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P t42-t52 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_a3/ %G en %F MBB_2022_17_a3
A. N. Korshounova; V. D. Lakhno. The incipient formation of the internal dynamics of a uniformly moving polaron in a polynucleotide chain subjected to a constant electric field. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022), pp. t42-t52. http://geodesic.mathdoc.fr/item/MBB_2022_17_a3/
[1] T. Holstein, “Studies of polaron motion. Part I: The molecular-crystal model”, Annals of Phys., 8 (1959), 325–342 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90002-8'>10.1016/0003-4916(59)90002-8</ext-link>
[2] T. Holstein, “Studies of polaron motion. Part II: The “small” polaron”, Annals of Phys., 8 (1959), 343–389 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-4916(59)90003-X'>10.1016/0003-4916(59)90003-X</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0173.30404'>0173.30404</ext-link>
[3] D. Hennig, E. B. Starikov, J. F.R. Archilla, F. Palmero, “Charge Transport in Poly(dG)-Poly(dC) and Poly(dA)-Poly(dT) DNA Polymers”, Journal of Biological Physics, 30:3 (2004), 227–238 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/B:JOBP.0000046721.92623.a9'>10.1023/B:JOBP.0000046721.92623.a9</ext-link>
[4] Z. Huang, M. Hoshina, H. Ishihara, Y. Zhao, “Transient dynamics of super Bloch oscillations of a one dimensional Holstein polaron under the influence of an external AC electric field”, Annalen der Physik, 529 (2017), 1600367 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/andp.201600367'>10.1002/andp.201600367</ext-link>
[5] D. Hennig, A. D. Burbanks, A. H. Osbaldestin, “Directed current in the Holstein system”, Phys. Rev. E, 83 (2011), 031121 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.83.031121'>10.1103/PhysRevE.83.031121</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2788228'>2788228</ext-link>
[6] L. V. Yakushevich, V. N. Balashova, F. K. Zakiryanov, “On the DNA Kink Motion Under the Action of Constant Torque”, Math. Biol. Bioinf., 11:1 (2016), 81–90 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.81'>10.17537/2016.11.81</ext-link>
[7] E. B. Starikov, J. P. Lewis, O. F. Sankey, “Base sequence effects on charge carrier generation in DNA: a theoretical study”, International Journal of Modern Physics B, 19:29 (2005), 4331–4357 <ext-link ext-link-type='doi' href='https://doi.org/10.1142/S0217979205032802'>10.1142/S0217979205032802</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1076.92001'>1076.92001</ext-link>
[8] A. S. Davydov, Solitons in Molecular systems, Reidel Publ. Comp., Boston, USA, 1985, 413 pp. <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-94-017-3025-9'>10.1007/978-94-017-3025-9</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=823982'>823982</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0597.35001'>0597.35001</ext-link>
[9] Scott A. C., “Davydov's soliton”, Phys. Rep., 217:1 (1992), 1–67 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0370-1573(92)90093-F'>10.1016/0370-1573(92)90093-F</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1031421'>1031421</ext-link>
[10] P. J. De Pablo, F. Moreno-Herrero, J. Colchero, J. Gomez Herrero, P. Herrero, A. M. Baro, P. Ordejon, J. M. Soler, E. Artacho, “Absence of dc-Conductivity in $\lambda$-DNA”, Phys. Rev. Lett., 85 (2000), 4992–4995 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.85.4992'>10.1103/PhysRevLett.85.4992</ext-link>
[11] D. Porath, A. Bezryadin, S. De Vries, C. Dekker, “Direct measurement of electrical transport through DNA molecules”, Nature, 403 (2000), 635–638 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/35001029'>10.1038/35001029</ext-link>
[12] K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, Kim Jinhee, J. J. Kim, H. Y. Lee, T. Kawai, Choi Han Yong, “Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules”, Phys. Rev. Lett., 87 (2001), 198102 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.87.198102'>10.1103/PhysRevLett.87.198102</ext-link>
[13] A. Y. Kasumov, M. Kociak, S. Gue?ron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, “Proximity-Induced Superconductivity in DNA”, Science, 291:5502 (2001), 280–282 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.291.5502.280'>10.1126/science.291.5502.280</ext-link>
[14] A. Chepeliaskii, D. Klinov, A. Kasumov, S. Gueron, O. Pietrement, S. Lyonnais, H. Bouchiat, “Conduction of DNA molecules attached to a disconnected array of metallic Ga nanoparticles”, New J. Phys., 13 (2011), 063046 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1367-2630/13/6/063046'>10.1088/1367-2630/13/6/063046</ext-link>
[15] D. Porath, G. Cuniberti, R. Di Felice, “Charge transport in DNA-based devices”, Top. Curr. Chem., 237 (2004), 183–227 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/b94477'>10.1007/b94477</ext-link>
[16] A. P. Chetverikov, W. Ebeling, V. D. Lakhno, M. G. Velarde, “Discrete-breather-assisted charge transport along DNA-like molecular wires”, Phys. Rev. E, 100 (2019), 052203 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.100.052203'>10.1103/PhysRevE.100.052203</ext-link>
[17] R. G. Eudres, D. L. Cox, R. R.P. Singh, “Colloquium: The quest for high-conductance DNA”, Rev. Mod. Phys., 76 (2004), 195–214 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/RevModPhys.76.195'>10.1103/RevModPhys.76.195</ext-link>
[18] V. D. Lakhno, “DNA nanobioelectronics”, Int. Quantum. Chem., 108 (2008), 1970–1981 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.21717'>10.1002/qua.21717</ext-link>
[19] A. Offenhausser, R. Rinald (eds.), Nanobioelectronics for Electronics, Biology and Medicine, Springer, N.Y., 2009
[20] Taniguchi M., Kawai T., “DNA electronics”, Physica E, 33 (2006), 1–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2006.01.005'>10.1016/j.physe.2006.01.005</ext-link>
[21] Conwell E.M., Rakhmanova S.V., “Polarons in DNA”, Proc. Natl. Acad. Sci., 97 (2000), 4556-4560 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.050074497'>10.1073/pnas.050074497</ext-link>
[22] K. Voulgarakis Nikolaos, “The effect of thermal fluctuations on Holstein polaron dynamics in electric Field”, Physica B, 519 (2017), 5–20 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physb.2017.04.030'>10.1016/j.physb.2017.04.030</ext-link>
[23] N. S. Fialko, V. D. Lakhno, “Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations”, Math. Biol. Bioinf., 14:2 (2019), 406–419 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.406'>10.17537/2019.14.406</ext-link>
[24] M. A. Fuentes, P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, V. M. Kenkre, Yu. B. Gaididei, “Multipeaked polarons in soft potentials”, Phys. Rev. E, 70 (2004), 025601(R) <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.70.025601'>10.1103/PhysRevE.70.025601</ext-link>
[25] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “Polaron normal modes in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 68 (2003), 174304 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevB.68.174304'>10.1103/PhysRevB.68.174304</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1975723'>1975723</ext-link>
[26] Astakhova T. Yu., Vinogradov G. A., “Polyaron v elektricheskom pole i kolebatelnyi spektr poliatsetilena”, Matematicheskaya biologiya i bioinformatika, 14:1 (2019), 150–159 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.150'>10.17537/2019.14.150</ext-link>
[27] A. A. Voityuk, N. Rosch, M. Bixon, J. Jortner, “Electronic Coupling for Charge Transfer and Transport in DNA”, J. Phys. Chem. B, 104:41 (2000), 9740–9745 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp001109w'>10.1021/jp001109w</ext-link>
[28] J. Jortner, M. Bixon, A. A. Voityuk, N. J. Rosch, “Superexchange Mediated Charge Hopping in DNA”, Phys. Chem. A, 106 (2002), 7599–7606 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp014232b'>10.1021/jp014232b</ext-link>
[29] V. D. Lakhno, A. N. Korshunova, “Formation of stationary electronic states in finite homogeneous molecular chains”, Mathematical biology and bioinformatics, 5:1 (2010), 1–29 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2010.5.1'>10.17537/2010.5.1</ext-link>
[30] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.physe.2014.02.025'>10.1016/j.physe.2014.02.025</ext-link>
[31] V. D. Lakhno, “Soliton-like Solutions and Electron Transfer in DNA”, J. Biol. Phys., 26 (2000), 133–147 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1005275211233'>10.1023/A:1005275211233</ext-link>
[32] A. N. Korshunova, V. D. Lakhno, “Simulation of the Stationary and Nonstationary Charge Transfer Conditions in a Uniform Holstein Chain Placed in Constant Electric Field”, Technical Physics, 63:9 (2018), 1270–1276 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1063784218090086'>10.1134/S1063784218090086</ext-link>
[33] V. D. Lakhno, “Davydov's solitons in a homogeneous nucleotide chain”, Int. J. Quant. Chem., 110 (2010), 127–137 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/qua.22264'>10.1002/qua.22264</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=913530'>913530</ext-link>
[34] V. D. Lakhno, A. N. Korshunova, “Bloch oscillations of a soliton in a molecular chain”, Eur. Phys. J. B, 55 (2007), 85–87 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2007-00045-3'>10.1140/epjb/e2007-00045-3</ext-link>
[35] V. D. Lakhno, A. N. Korshunova, “Electron motion in a Holstein molecular chain in an electric field”, Euro. Phys. J. B, 79 (2011), 147–151 <ext-link ext-link-type='doi' href='https://doi.org/10.1140/epjb/e2010-10565-2'>10.1140/epjb/e2010-10565-2</ext-link>