Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_a2, author = {A. E. Medvedev}, title = {Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t30--t41}, publisher = {mathdoc}, volume = {17}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_a2/} }
TY - JOUR AU - A. E. Medvedev TI - Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - t30 EP - t41 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_a2/ LA - en ID - MBB_2022_17_a2 ER -
%0 Journal Article %A A. E. Medvedev %T Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P t30-t41 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_a2/ %G en %F MBB_2022_17_a2
A. E. Medvedev. Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022), pp. t30-t41. http://geodesic.mathdoc.fr/item/MBB_2022_17_a2/
[1] A. M. Chernyavskiy, M. M. Lyashenko, A. R. Tarkova, D. A. Sirota, D. S. Khvan, E. I. Kretov, A. A. Prokhorikhin, D. U. Malaev, A. A. Boykov, “Hybrid procedures for aortic arch disease”, Pirogov Journal of Surgery, 2019, no. 4, 87–93 <ext-link ext-link-type='doi' href='https://doi.org/10.17116/hirurgia201904187'>10.17116/hirurgia201904187</ext-link>
[2] N. Sakalihasan, J-B. Michel, A. Katsargyris, H. Kuivaniemi, J-O. Defraigne, A. Nchimi, J. T. Powell, K. Yoshimura, R. Hultgren, “Abdominal aortic aneurysms”, Nature Reviews Disease Primers, 4:34 (2018), 1–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41572-018-0030-7'>10.1038/s41572-018-0030-7</ext-link>
[3] D. Roy, C. Kauffmann, S. Delorme, S. Lerouge, G. Cloutier, G. Soulez, “A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts”, Computational and Mathematical Methods in Medicine, 2012 (2012), 820389, 1–16 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2012/820389'>10.1155/2012/820389</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2969381'>2969381</ext-link>
[4] Nenad Filipovic (ed.), Computational Modeling and Simulation Examples in Bioengineering, 1st ed., Wiley, 2021, 384 pp.
[5] C. M. Scotti, A. D. Shkolnik, S. C. Muluk, E. A. Finol, “Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness”, BioMedical Engineering Online, 4 (2005), 64, 1–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1475-925X-4-64'>10.1186/1475-925X-4-64</ext-link>
[6] K. K. Skripachenko, A. A. Golyadkina, K. M. Morozov, N. O. Chelnokova, N. V. Ostrovsky, I. V. Kirillova, L. Y. Kossovich, “Biomechanical patient-oriented analysis of influence of the aneurysm on the hemodynamics of the thoracic aorta”, Russian Journal of Biomechanics, 23:4 (2019), 526–536 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2019.4.03'>10.15593/RZhBiomeh/2019.4.03</ext-link>
[7] B. J. Doyle, A. Callanan, T. M. McGloughlin, “A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms”, BioMedical Engineering Online, 6:38 (2007), 1–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1475-925X-6-38'>10.1186/1475-925X-6-38</ext-link>
[8] D. E. Sinitsyna, A. D. Yuhnev, D. K. Zaytsev, M. V. Turkina, “The flow structure in a three-dimensional model of abdominal aortic bifurcation: ultrasonic and numerical study”, St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 12:4 (2019), 50–60 <ext-link ext-link-type='doi' href='https://doi.org/10.18721/JPM.12405'>10.18721/JPM.12405</ext-link>
[9] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, T. J.R. Hughes, “Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow”, Computer Methods in Applied Mechanics and Engineering, 196:29-30 (2007), 2943–2959 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cma.2007.02.009'>10.1016/j.cma.2007.02.009</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2325400'>2325400</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1121.76076'>1121.76076</ext-link>
[10] M. Coda, Advanced patient-specific modeling and analysis of complex aortic structures by means of Isogeometric Analysis, PhD Dissertation, University of Pavia, Pavia, 2019, 172 pp. <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1438.74078'>1438.74078</ext-link>
[11] Rami Haj-Ali, Gil Marom, S. B. Zekry, M. Rosenfeld, E. Raanani, “A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling”, Journal of Biomechanics, 45:14 (2012), 2392–2397 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2012.07.017'>10.1016/j.jbiomech.2012.07.017</ext-link>
[12] J. De Hart, G. W.M. Peters, P. J.G. Schreurs, F. P.T. Baaijens, “A three-dimensional computational analysis of fluid-structure interaction in the aortic valve”, Journal of Biomechanics, 36:1 (2003), 103–112 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0021-9290(02)00244-0'>10.1016/S0021-9290(02)00244-0</ext-link>
[13] J. S. Rankin, M. C. Bone, P. M. Fries, D. Aicher, H.-J. Schafers, P. S. Crooke, “A refined hemispheric model of normal human aortic valve and root geometry”, Journal of Thoracic and Cardiovascular Surgery, 146:1 (2013), 103–108 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtcvs.2012.06.043'>10.1016/j.jtcvs.2012.06.043</ext-link>
[14] M. B. Jatene, R. Monteiro, M. H. Guimaraes, S. C. Veronezi, M. K. Koike, F. B. Jatene, A. D. Jatene, “Aortic Valve assessment. Anatomical study of 100 healthy human hearts”, Arquivos Brasileiros de Cardiologia, 73:1 (1999), 81–86 <ext-link ext-link-type='doi' href='https://doi.org/10.1590/S0066-782X1999000700007'>10.1590/S0066-782X1999000700007</ext-link>
[15] K. Cao, M. Bukac, P. Sucosky, “Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets”, Computer Methods in Biomechanics and Biomedical Engineering, 19:6 (2016), 603–613 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/10255842.2015.1052419'>10.1080/10255842.2015.1052419</ext-link>
[16] K. Cao, P. Sucosky, “Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets”, International Journal for Numerical Methods in Biomedical Engineering, 33:3 (2017), 1–21 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cnm.2798'>10.1002/cnm.2798</ext-link>
[17] D. Wojciechowska, A. R. Liberski, P. Wilczek, J. Butcher, M. Scharfschwerdt, Z. Hijazi, J. Kasprzak, P. Pibarot, R. Bianco, “The optimal shape of an aortic heart valve replacement on the road to the consensus”, QScience Connect, 2017:3 (2017), 1–14 <ext-link ext-link-type='doi' href='https://doi.org/10.5339/connect.2017.1'>10.5339/connect.2017.1</ext-link>
[18] Thubrikar M., The aortic valve, Informa Healthcare, 2012, 232 pp.
[19] A. Redaelli, E. Di Martino, A. Gamba, A. M. Procopio, R. Fumero, “Assessment of the influence of the compliant aortic root on aortic valve mechanics by means of a geometrical model”, Medical Engineering and Physics, 19:8 (1997), 696–710 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1350-4533(97)00033-7'>10.1016/S1350-4533(97)00033-7</ext-link>
[20] D. N. Knyazev, E. S. Ustinova, “Construction of the line of intersection of two cylinders in a parametric form”, Technical sciences in Russia and abroad, Proc. IV Intern. Conf. (Moscow, January, 2015), Buki-Vedi, M., 2015, 122–125
[21] A. E. Medvedev, P. S. Gafurova, “Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases”, Mathematical Biology and Bioinformatics, 14:2 (2019), 635–648 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.635'>10.17537/2019.14.635</ext-link>
[22] A. E. Medvedev, “Method of Constructing an Asymmetric Human Bronchial Tree in Normal and Pathological Cases”, Mathematical Biology and Bioinformatics, 15:2 (2020), 148–157 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2020.15.148'>10.17537/2020.15.148</ext-link>