Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022), pp. t30-t41.

Voir la notice de l'article provenant de la source Math-Net.Ru

A technique has been developed for constructing the geometry of a morphologically realistic human aorta, including the aortic root (Valsalva sinus), thoracic aorta, aortic arch with branches, and abdominal aorta with bifurcating vessels. The peculiarity of the technique is simple construction of an individual patient’s aorta. The resulting three-dimensional model of the aorta is fully ready for 3D modeling and printing on a 3D printer.
@article{MBB_2022_17_a2,
     author = {A. E. Medvedev},
     title = {Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t30--t41},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_a2/}
}
TY  - JOUR
AU  - A. E. Medvedev
TI  - Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - t30
EP  - t41
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_a2/
LA  - en
ID  - MBB_2022_17_a2
ER  - 
%0 Journal Article
%A A. E. Medvedev
%T Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P t30-t41
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_a2/
%G en
%F MBB_2022_17_a2
A. E. Medvedev. Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022), pp. t30-t41. http://geodesic.mathdoc.fr/item/MBB_2022_17_a2/

[1] A. M. Chernyavskiy, M. M. Lyashenko, A. R. Tarkova, D. A. Sirota, D. S. Khvan, E. I. Kretov, A. A. Prokhorikhin, D. U. Malaev, A. A. Boykov, “Hybrid procedures for aortic arch disease”, Pirogov Journal of Surgery, 2019, no. 4, 87–93 <ext-link ext-link-type='doi' href='https://doi.org/10.17116/hirurgia201904187'>10.17116/hirurgia201904187</ext-link>

[2] N. Sakalihasan, J-B. Michel, A. Katsargyris, H. Kuivaniemi, J-O. Defraigne, A. Nchimi, J. T. Powell, K. Yoshimura, R. Hultgren, “Abdominal aortic aneurysms”, Nature Reviews Disease Primers, 4:34 (2018), 1–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/s41572-018-0030-7'>10.1038/s41572-018-0030-7</ext-link>

[3] D. Roy, C. Kauffmann, S. Delorme, S. Lerouge, G. Cloutier, G. Soulez, “A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts”, Computational and Mathematical Methods in Medicine, 2012 (2012), 820389, 1–16 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2012/820389'>10.1155/2012/820389</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2969381'>2969381</ext-link>

[4] Nenad Filipovic (ed.), Computational Modeling and Simulation Examples in Bioengineering, 1st ed., Wiley, 2021, 384 pp.

[5] C. M. Scotti, A. D. Shkolnik, S. C. Muluk, E. A. Finol, “Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness”, BioMedical Engineering Online, 4 (2005), 64, 1–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1475-925X-4-64'>10.1186/1475-925X-4-64</ext-link>

[6] K. K. Skripachenko, A. A. Golyadkina, K. M. Morozov, N. O. Chelnokova, N. V. Ostrovsky, I. V. Kirillova, L. Y. Kossovich, “Biomechanical patient-oriented analysis of influence of the aneurysm on the hemodynamics of the thoracic aorta”, Russian Journal of Biomechanics, 23:4 (2019), 526–536 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2019.4.03'>10.15593/RZhBiomeh/2019.4.03</ext-link>

[7] B. J. Doyle, A. Callanan, T. M. McGloughlin, “A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms”, BioMedical Engineering Online, 6:38 (2007), 1–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1475-925X-6-38'>10.1186/1475-925X-6-38</ext-link>

[8] D. E. Sinitsyna, A. D. Yuhnev, D. K. Zaytsev, M. V. Turkina, “The flow structure in a three-dimensional model of abdominal aortic bifurcation: ultrasonic and numerical study”, St. Petersburg Polytechnical State University Journal. Physics and Mathematics, 12:4 (2019), 50–60 <ext-link ext-link-type='doi' href='https://doi.org/10.18721/JPM.12405'>10.18721/JPM.12405</ext-link>

[9] Y. Zhang, Y. Bazilevs, S. Goswami, C. L. Bajaj, T. J.R. Hughes, “Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow”, Computer Methods in Applied Mechanics and Engineering, 196:29-30 (2007), 2943–2959 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cma.2007.02.009'>10.1016/j.cma.2007.02.009</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2325400'>2325400</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1121.76076'>1121.76076</ext-link>

[10] M. Coda, Advanced patient-specific modeling and analysis of complex aortic structures by means of Isogeometric Analysis, PhD Dissertation, University of Pavia, Pavia, 2019, 172 pp. <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1438.74078'>1438.74078</ext-link>

[11] Rami Haj-Ali, Gil Marom, S. B. Zekry, M. Rosenfeld, E. Raanani, “A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling”, Journal of Biomechanics, 45:14 (2012), 2392–2397 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2012.07.017'>10.1016/j.jbiomech.2012.07.017</ext-link>

[12] J. De Hart, G. W.M. Peters, P. J.G. Schreurs, F. P.T. Baaijens, “A three-dimensional computational analysis of fluid-structure interaction in the aortic valve”, Journal of Biomechanics, 36:1 (2003), 103–112 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0021-9290(02)00244-0'>10.1016/S0021-9290(02)00244-0</ext-link>

[13] J. S. Rankin, M. C. Bone, P. M. Fries, D. Aicher, H.-J. Schafers, P. S. Crooke, “A refined hemispheric model of normal human aortic valve and root geometry”, Journal of Thoracic and Cardiovascular Surgery, 146:1 (2013), 103–108 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jtcvs.2012.06.043'>10.1016/j.jtcvs.2012.06.043</ext-link>

[14] M. B. Jatene, R. Monteiro, M. H. Guimaraes, S. C. Veronezi, M. K. Koike, F. B. Jatene, A. D. Jatene, “Aortic Valve assessment. Anatomical study of 100 healthy human hearts”, Arquivos Brasileiros de Cardiologia, 73:1 (1999), 81–86 <ext-link ext-link-type='doi' href='https://doi.org/10.1590/S0066-782X1999000700007'>10.1590/S0066-782X1999000700007</ext-link>

[15] K. Cao, M. Bukac, P. Sucosky, “Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets”, Computer Methods in Biomechanics and Biomedical Engineering, 19:6 (2016), 603–613 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/10255842.2015.1052419'>10.1080/10255842.2015.1052419</ext-link>

[16] K. Cao, P. Sucosky, “Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets”, International Journal for Numerical Methods in Biomedical Engineering, 33:3 (2017), 1–21 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cnm.2798'>10.1002/cnm.2798</ext-link>

[17] D. Wojciechowska, A. R. Liberski, P. Wilczek, J. Butcher, M. Scharfschwerdt, Z. Hijazi, J. Kasprzak, P. Pibarot, R. Bianco, “The optimal shape of an aortic heart valve replacement on the road to the consensus”, QScience Connect, 2017:3 (2017), 1–14 <ext-link ext-link-type='doi' href='https://doi.org/10.5339/connect.2017.1'>10.5339/connect.2017.1</ext-link>

[18] Thubrikar M., The aortic valve, Informa Healthcare, 2012, 232 pp.

[19] A. Redaelli, E. Di Martino, A. Gamba, A. M. Procopio, R. Fumero, “Assessment of the influence of the compliant aortic root on aortic valve mechanics by means of a geometrical model”, Medical Engineering and Physics, 19:8 (1997), 696–710 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1350-4533(97)00033-7'>10.1016/S1350-4533(97)00033-7</ext-link>

[20] D. N. Knyazev, E. S. Ustinova, “Construction of the line of intersection of two cylinders in a parametric form”, Technical sciences in Russia and abroad, Proc. IV Intern. Conf. (Moscow, January, 2015), Buki-Vedi, M., 2015, 122–125

[21] A. E. Medvedev, P. S. Gafurova, “Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases”, Mathematical Biology and Bioinformatics, 14:2 (2019), 635–648 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.635'>10.17537/2019.14.635</ext-link>

[22] A. E. Medvedev, “Method of Constructing an Asymmetric Human Bronchial Tree in Normal and Pathological Cases”, Mathematical Biology and Bioinformatics, 15:2 (2020), 148–157 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2020.15.148'>10.17537/2020.15.148</ext-link>