Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022), pp. t14-t29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with numerical simulation of the air flow in the full human bronchial tree. In their previous studies, the authors developed an analytical model of the full human bronchial tree and a method of stageby-stage computation of the respiratory tract. A possibility of using the proposed method for a wide range of problems of numerical simulations of the air flow in human lungs is analyzed. The following situations are considered: 1) steady inspiration (with different flow rates of air) for circular and “starry” cross sections of bronchi (“starry” cross sections models some lung pathology); 2) steady expiration; 3) unsteady inspiration; 4) precipitation of medical drug aerosol droplets in human bronchi. The results predicted by the proposed method are compared with results of other researchers and found to be in good agreement. In contrast to previous investigations, the air flow in the full (down to alveoli) bronchial tree is studied for the first time. It is shown that expiration requires a greater pressure difference (approximately by 30%) than inspiration. Numerical simulations of precipitation of medical drug aerosol droplets in the human respiratory tract show that aerosol droplets generated by a standard nebulizer do not reach the alveoli (the droplets settle down in the lower regions of the bronchi).
@article{MBB_2022_17_a1,
     author = {A. E. Medvedev and P. S. Golysheva},
     title = {Simulation of air motion in human lungs during breathing. {Dynamics} of liquid droplet precipitation in the case of medicine drug aerosols},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t14--t29},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_a1/}
}
TY  - JOUR
AU  - A. E. Medvedev
AU  - P. S. Golysheva
TI  - Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - t14
EP  - t29
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_a1/
LA  - en
ID  - MBB_2022_17_a1
ER  - 
%0 Journal Article
%A A. E. Medvedev
%A P. S. Golysheva
%T Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P t14-t29
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_a1/
%G en
%F MBB_2022_17_a1
A. E. Medvedev; P. S. Golysheva. Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022), pp. t14-t29. http://geodesic.mathdoc.fr/item/MBB_2022_17_a1/

[1] A. Peters, H. E. Wichmann, T. Tuch, J. Heinrich, J. Heyder, “Respiratory Effects are Associated with the Number of Ultrafine Particles”, Am. J. Respir. Crit. Care Med, 155 (1997), 1376–1383 <ext-link ext-link-type='doi' href='https://doi.org/10.1164/ajrccm.155.4.9105082'>10.1164/ajrccm.155.4.9105082</ext-link>

[2] E. R. Weibel, Morphometry of the Human Lung, Springer Verlag, Berlin, 1963

[3] N. Nowak, P. P. Kadake, A. V. Annapragada, “Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs”, Journal Annals of Biomedical Engineering, 31:4 (2003), 374–390 <ext-link ext-link-type='doi' href='https://doi.org/10.1114/1.1560632'>10.1114/1.1560632</ext-link>

[4] Z. Zhang, C. Kleinstreuer, C. S. Kim, “Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model”, Journal Annals of Biomedical Engineering, 36:12 (2008), 2095–2110 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10439-008-9583-z'>10.1007/s10439-008-9583-z</ext-link>

[5] M. S. Islam, G. Paul, H. X. Ong, P. M. Young, Y. T. Gu, S. C. Saha, “A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition”, International Journal of Environmental Research and Public Health, 17:2 (2020), 380 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijerph17020380'>10.3390/ijerph17020380</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4231122'>4231122</ext-link>

[6] D. K. Walters, G. W. Burgreen, R. L. Hester, D. S. Thompson, D. M. Lavallee, W. A. Pruett, X. Wang, “Cyclic Breathing Simulations in Large-Scale Models of the Lung Airway from the Oronasal Opening to the Terminal Bronchioles”, J. Fluids Eng, 136 (2014), 101101 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.4027485'>10.1115/1.4027485</ext-link>

[7] M. S. Islam, S. C. Saha, E. Sauret, T. Gemci, I. A. Yang, Y. T. Gua, “Ultrafine particle transport and deposition in a large scale 17-generation lung model”, Journal of Biomechanics, 64 (2017), 16–25 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2017.08.028'>10.1016/j.jbiomech.2017.08.028</ext-link>

[8] M. S. Islam, S. C. Saha, P. M. Young, “Aerosol particle transport and deposition in a CT-based lung airway for helium-oxygen mixture”, Proceedings of the 21st Australasian Fluid Mechanics Conference (Adelaide, Australia, December 2018), 2018, 10–13

[9] A. E. Medvedev, P. S. Gafurova, “Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases”, Mathematical Biology and Bioinformatics, 14:2 (2019), 635–648 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.635'>10.17537/2019.14.635</ext-link>

[10] A. E. Medvedev, “Method of Constructing an Asymmetric Human Bronchial Tree in Normal and Pathological Cases”, Mathematical Biology and Bioinformatics, 15:2 (2020), 148–157 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2020.15.t21'>10.17537/2020.15.t21</ext-link>

[11] A. F. Tena, P. Casan, J. Fernandez, C. Ferrera, A. Marcos, “Characterization of particle deposition in a lung model using an individual path”, EPJ Web of Conferences, 45 (2013) <ext-link ext-link-type='doi' href='https://doi.org/10.1051/epjconf/20134501079'>10.1051/epjconf/20134501079</ext-link>

[12] A. F. Tena, J. F. Francos, E. Alvarez, P. Casan, “A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans”, Engineering Applications of Computational Fluid Mechanics, 9:1 (2015), 187–198 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/19942060.2015.1004819'>10.1080/19942060.2015.1004819</ext-link>

[13] A. F. Tena, J. Fernandez, E. Alvarez, P. Casan, D. Keith Walters, “Design of a numerical model of lung by means of a special boundary condition in the truncated branches”, International Journal for Numerical Methods in Biomedical Engineering, 33:6 (2017) <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cnm.2830'>10.1002/cnm.2830</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3670871'>3670871</ext-link>

[14] A. E. Medvedev, V. M. Fomin, P. S. Gafurova, “Three-dimensional model of the human bronchial tree modeling of the air flow in normal and pathological cases”, Journal of Applied Mechanics and Technical Physics, 61:1 (2020), 1–13 <ext-link ext-link-type='doi' href='https://doi.org/10.15372/PMTF20200101'>10.15372/PMTF20200101</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4136817'>4136817</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1451.92007'>1451.92007</ext-link>

[15] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modeling of human breath: conceptual and mathematical statements”, Mathematical Biology and Bioinformatics, 11:1 (2016), 64–80 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.64'>10.17537/2016.11.64</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link>

[16] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babuskina, “Modelling dusty air flow in the human respiratory tract”, Russian Journal of Biomechanics, 22:3 (2018), 262–274 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2018.3.03'>10.15593/RZhBiomeh/2018.3.03</ext-link>

[17] M. R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C. P.M. van der Grinten, P. Gustafsson et al, “Standardisation of spirometry”, European Respiratory Journal, 26 (2005), 319–338 <ext-link ext-link-type='doi' href='https://doi.org/10.1183/09031936.05.00034805'>10.1183/09031936.05.00034805</ext-link>

[18] V. L. Ganimedov, M. I. Muchnaya, A. S. Sadovskii, “Air flow in the human nasal cavity. Results of mathematical modelling”, Russian Journal of Biomechanics, 19:1 (2015), 31–44 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2015.1.03'>10.15593/RZhBiomeh/2015.1.03</ext-link>

[19] V. M. Fomin, V. N. Vetlutsky, V. L. Ganimedov, M. I. Muchnaya, V. N. Shepelenko, M. N. Melnikov, A. A. Savina, “Air flow in the human nasal cavity”, Journal of Applied Mechanics and Technical Physics, 51:2 (2010), 233–240 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10808-010-0033-y'>10.1007/s10808-010-0033-y</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1272.76325'>1272.76325</ext-link>

[20] V. L. Ganimedov, M. I. Muchnaya, “Numerical simulation of particle deposition in the human nasal cavity”, Thermophysics and Aeromechanics, 27:2 (2020), 303–312 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0869864320020122'>10.1134/S0869864320020122</ext-link>

[21] G. N. Lukyanov, A. A. Voronin, A. A. Rassadina, “Simulation of convective flows in irregular channels on the example of the human nasal cavity and paranasal sinuses”, Technical Physics, 62 (2017), 484–489 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1063784217030136'>10.1134/S1063784217030136</ext-link>

[22] Hermes O., Hadamard-Rybczynski Equation, Bellum Publ, 2012

[23] A. E. Medvedev, P. S. Gafurova, “Air flow and precipitation of medicine aerosol droplets in the human bronchial tree”, AIP Conference Proceedings, 2351:1 (2021) <ext-link ext-link-type='doi' href='https://doi.org/1063/5.0051724'>1063/5.0051724</ext-link>

[24] A. E. Medvedev, P. S. Gafurova, “Simulation of the deposition of aerosol droplets in a person's bronchial tree”, Journal of Physics: Conference Series, 1404 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1742-6596/1404/1/012031'>10.1088/1742-6596/1404/1/012031</ext-link>