Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_a1, author = {A. E. Medvedev and P. S. Golysheva}, title = {Simulation of air motion in human lungs during breathing. {Dynamics} of liquid droplet precipitation in the case of medicine drug aerosols}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {t14--t29}, publisher = {mathdoc}, volume = {17}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_a1/} }
TY - JOUR AU - A. E. Medvedev AU - P. S. Golysheva TI - Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - t14 EP - t29 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_a1/ LA - en ID - MBB_2022_17_a1 ER -
%0 Journal Article %A A. E. Medvedev %A P. S. Golysheva %T Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P t14-t29 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_a1/ %G en %F MBB_2022_17_a1
A. E. Medvedev; P. S. Golysheva. Simulation of air motion in human lungs during breathing. Dynamics of liquid droplet precipitation in the case of medicine drug aerosols. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022), pp. t14-t29. http://geodesic.mathdoc.fr/item/MBB_2022_17_a1/
[1] A. Peters, H. E. Wichmann, T. Tuch, J. Heinrich, J. Heyder, “Respiratory Effects are Associated with the Number of Ultrafine Particles”, Am. J. Respir. Crit. Care Med, 155 (1997), 1376–1383 <ext-link ext-link-type='doi' href='https://doi.org/10.1164/ajrccm.155.4.9105082'>10.1164/ajrccm.155.4.9105082</ext-link>
[2] E. R. Weibel, Morphometry of the Human Lung, Springer Verlag, Berlin, 1963
[3] N. Nowak, P. P. Kadake, A. V. Annapragada, “Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs”, Journal Annals of Biomedical Engineering, 31:4 (2003), 374–390 <ext-link ext-link-type='doi' href='https://doi.org/10.1114/1.1560632'>10.1114/1.1560632</ext-link>
[4] Z. Zhang, C. Kleinstreuer, C. S. Kim, “Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model”, Journal Annals of Biomedical Engineering, 36:12 (2008), 2095–2110 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10439-008-9583-z'>10.1007/s10439-008-9583-z</ext-link>
[5] M. S. Islam, G. Paul, H. X. Ong, P. M. Young, Y. T. Gu, S. C. Saha, “A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition”, International Journal of Environmental Research and Public Health, 17:2 (2020), 380 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/ijerph17020380'>10.3390/ijerph17020380</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4231122'>4231122</ext-link>
[6] D. K. Walters, G. W. Burgreen, R. L. Hester, D. S. Thompson, D. M. Lavallee, W. A. Pruett, X. Wang, “Cyclic Breathing Simulations in Large-Scale Models of the Lung Airway from the Oronasal Opening to the Terminal Bronchioles”, J. Fluids Eng, 136 (2014), 101101 <ext-link ext-link-type='doi' href='https://doi.org/10.1115/1.4027485'>10.1115/1.4027485</ext-link>
[7] M. S. Islam, S. C. Saha, E. Sauret, T. Gemci, I. A. Yang, Y. T. Gua, “Ultrafine particle transport and deposition in a large scale 17-generation lung model”, Journal of Biomechanics, 64 (2017), 16–25 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jbiomech.2017.08.028'>10.1016/j.jbiomech.2017.08.028</ext-link>
[8] M. S. Islam, S. C. Saha, P. M. Young, “Aerosol particle transport and deposition in a CT-based lung airway for helium-oxygen mixture”, Proceedings of the 21st Australasian Fluid Mechanics Conference (Adelaide, Australia, December 2018), 2018, 10–13
[9] A. E. Medvedev, P. S. Gafurova, “Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases”, Mathematical Biology and Bioinformatics, 14:2 (2019), 635–648 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2019.14.635'>10.17537/2019.14.635</ext-link>
[10] A. E. Medvedev, “Method of Constructing an Asymmetric Human Bronchial Tree in Normal and Pathological Cases”, Mathematical Biology and Bioinformatics, 15:2 (2020), 148–157 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2020.15.t21'>10.17537/2020.15.t21</ext-link>
[11] A. F. Tena, P. Casan, J. Fernandez, C. Ferrera, A. Marcos, “Characterization of particle deposition in a lung model using an individual path”, EPJ Web of Conferences, 45 (2013) <ext-link ext-link-type='doi' href='https://doi.org/10.1051/epjconf/20134501079'>10.1051/epjconf/20134501079</ext-link>
[12] A. F. Tena, J. F. Francos, E. Alvarez, P. Casan, “A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans”, Engineering Applications of Computational Fluid Mechanics, 9:1 (2015), 187–198 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/19942060.2015.1004819'>10.1080/19942060.2015.1004819</ext-link>
[13] A. F. Tena, J. Fernandez, E. Alvarez, P. Casan, D. Keith Walters, “Design of a numerical model of lung by means of a special boundary condition in the truncated branches”, International Journal for Numerical Methods in Biomedical Engineering, 33:6 (2017) <ext-link ext-link-type='doi' href='https://doi.org/10.1002/cnm.2830'>10.1002/cnm.2830</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3670871'>3670871</ext-link>
[14] A. E. Medvedev, V. M. Fomin, P. S. Gafurova, “Three-dimensional model of the human bronchial tree modeling of the air flow in normal and pathological cases”, Journal of Applied Mechanics and Technical Physics, 61:1 (2020), 1–13 <ext-link ext-link-type='doi' href='https://doi.org/10.15372/PMTF20200101'>10.15372/PMTF20200101</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=4136817'>4136817</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1451.92007'>1451.92007</ext-link>
[15] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, “Modeling of human breath: conceptual and mathematical statements”, Mathematical Biology and Bioinformatics, 11:1 (2016), 64–80 <ext-link ext-link-type='doi' href='https://doi.org/10.17537/2016.11.64'>10.17537/2016.11.64</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=3518492'>3518492</ext-link>
[16] P. V. Trusov, N. V. Zaitseva, M. Yu. Tsinker, A. V. Babuskina, “Modelling dusty air flow in the human respiratory tract”, Russian Journal of Biomechanics, 22:3 (2018), 262–274 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2018.3.03'>10.15593/RZhBiomeh/2018.3.03</ext-link>
[17] M. R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C. P.M. van der Grinten, P. Gustafsson et al, “Standardisation of spirometry”, European Respiratory Journal, 26 (2005), 319–338 <ext-link ext-link-type='doi' href='https://doi.org/10.1183/09031936.05.00034805'>10.1183/09031936.05.00034805</ext-link>
[18] V. L. Ganimedov, M. I. Muchnaya, A. S. Sadovskii, “Air flow in the human nasal cavity. Results of mathematical modelling”, Russian Journal of Biomechanics, 19:1 (2015), 31–44 <ext-link ext-link-type='doi' href='https://doi.org/10.15593/RZhBiomeh/2015.1.03'>10.15593/RZhBiomeh/2015.1.03</ext-link>
[19] V. M. Fomin, V. N. Vetlutsky, V. L. Ganimedov, M. I. Muchnaya, V. N. Shepelenko, M. N. Melnikov, A. A. Savina, “Air flow in the human nasal cavity”, Journal of Applied Mechanics and Technical Physics, 51:2 (2010), 233–240 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10808-010-0033-y'>10.1007/s10808-010-0033-y</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1272.76325'>1272.76325</ext-link>
[20] V. L. Ganimedov, M. I. Muchnaya, “Numerical simulation of particle deposition in the human nasal cavity”, Thermophysics and Aeromechanics, 27:2 (2020), 303–312 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0869864320020122'>10.1134/S0869864320020122</ext-link>
[21] G. N. Lukyanov, A. A. Voronin, A. A. Rassadina, “Simulation of convective flows in irregular channels on the example of the human nasal cavity and paranasal sinuses”, Technical Physics, 62 (2017), 484–489 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1063784217030136'>10.1134/S1063784217030136</ext-link>
[22] Hermes O., Hadamard-Rybczynski Equation, Bellum Publ, 2012
[23] A. E. Medvedev, P. S. Gafurova, “Air flow and precipitation of medicine aerosol droplets in the human bronchial tree”, AIP Conference Proceedings, 2351:1 (2021) <ext-link ext-link-type='doi' href='https://doi.org/1063/5.0051724'>1063/5.0051724</ext-link>
[24] A. E. Medvedev, P. S. Gafurova, “Simulation of the deposition of aerosol droplets in a person's bronchial tree”, Journal of Physics: Conference Series, 1404 (2019) <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1742-6596/1404/1/012031'>10.1088/1742-6596/1404/1/012031</ext-link>