Structure and features of amino acid sequences of $\Pi$-modules in $\mathrm{OB}$-folds
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 441-451.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stereochemical analysis has been performed for $\Pi$-modules from the large set of non-homologous protein structures containing the $\mathrm{OB}$-fold. That module consists of two $\beta$-strands connected by a loop and placed in different sheets in such a way which looks as Greek letter $\Pi$. Total $70$ non-homologous proteins at resolution not less than $2.5\mathring{\mathrm{A}}$ have been selected for the analysis from $265$ suitable structures belonging to sixteen $\mathrm{OB}$-fold super families. We have disclosed two types of $\Pi$-modules: the fist with the connecting loop containing $\alpha$-helix, and second one without helix. Entrance of protein chain into second $\beta$-sheet is carried out by the same arch with conformation $\beta\beta\beta\alpha_{\mathrm{L}}\beta_{\mathrm{p}}$. In most cases, $85\%$ of total, $\alpha$-positions are occupied by glycine residue, while at entrance in the loop such residues are absent. Occupancy frequency of $\Pi$-modules has been obtained in dependence on the loop length. Spatial pathway of structures of all modules are superimposed very well. Structural alignment of amino acid for $\Pi$-module sequences allows us to determine the key positions of the hydrophobic, hydrophilic, and glycine residues.
@article{MBB_2022_17_2_a9,
     author = {E. V. Brazhnikov and A. V. Efimov},
     title = {Structure and features of amino acid sequences of $\Pi$-modules in $\mathrm{OB}$-folds},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {441--451},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a9/}
}
TY  - JOUR
AU  - E. V. Brazhnikov
AU  - A. V. Efimov
TI  - Structure and features of amino acid sequences of $\Pi$-modules in $\mathrm{OB}$-folds
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 441
EP  - 451
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a9/
LA  - ru
ID  - MBB_2022_17_2_a9
ER  - 
%0 Journal Article
%A E. V. Brazhnikov
%A A. V. Efimov
%T Structure and features of amino acid sequences of $\Pi$-modules in $\mathrm{OB}$-folds
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 441-451
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a9/
%G ru
%F MBB_2022_17_2_a9
E. V. Brazhnikov; A. V. Efimov. Structure and features of amino acid sequences of $\Pi$-modules in $\mathrm{OB}$-folds. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 441-451. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a9/

[1] A. V. Efimov, “Standard structures in proteins”, Prog. Biophys. Molec. Biol, 60 (1993), 201–239 | DOI

[2] A. V. Efimov, “Favoured structural motifs in globular proteins”, Structure, 2 (1994), 999–1002 | DOI

[3] A. V. Efimov, “Super-secondary structures and modeling of protein folds”, Methods Molecular Biology, 932 (2013), 177–189 | DOI

[4] A. M. Kargatov, E. V. Brazhnikov, A. V. Efimov, “L-moduli v SH3-podobnykh foldakh: struktura i osobennosti posledovatelnostei”, Molekulyar. Biologiya, 52 (2018), 1074–1081 | DOI

[5] A. G. Murzin, “OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences”, EMBO J, 12 (1993), 861–867 | DOI

[6] V. Agrawal, K. V. Kishan, “OB-fold: growing bigger with functional consistency”, Curr. Protein. Pept. Sci, 4 (2003), 195–206 | DOI

[7] V. Agrawal, K. V. Kishan, “Functional evolution of two subtly different (similar) folds”, BMC Struct. Biol, 1 (2001), 5 | DOI

[8] V. Arcus, “OB-fold domains: a snapshot of the evolution of sequence, structure and function”, Curr. Opin. Struct. Biol, 12 (2002), 794–801 | DOI

[9] P. R. Bianco, “OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small-barrel Building Block”, Front. Mol. Biosci, 11 (2022), 784451 | DOI

[10] D. D. Nguyen, E. Y. Kim, P. B. Sang, W. Chai, “Roles of OB-Fold Proteins in Replication Stress”, Front. Cell Dev. Biol, 11 (2020) | DOI

[11] P. R. Bianco, “The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes”, Protein Sci, 30 (2021), 1757–1775 | DOI

[12] A. V. Efimov, “Structure of coiled $\beta$-$\beta$-hairpins and $\beta$-$\beta$-corners”, FEBS Lett, 284 (1991), 288–292 | DOI

[13] E. A. Boshkova, E. V. Brazhnikov, A. V. Efimov, “Relationship between structure and amino acid sequence of strongly twisted and coiled-hairpins in globular proteins”, Mol. Biol. (Mosk.), 50 (2016), 777–782 | DOI

[14] A. V. Efimov, “Structural motifs in which-strands are clipped together with the $\Pi$-like module”, Proteins, 85 (2017), 1925–1930 | DOI

[15] E. V. Brazhnikov, A. M. Kargatov, A. V. Efimov, “Struktura petlevykh uchastkov v $\beta$-$\alpha$- i $\alpha$-$\beta$-dugakh abCd-edinits v globulyarnykh belkakh”, Matem. biol. i bioinf, 11 (2016), 159–169 | DOI

[16] A. M. Kargatov, A. V. Efimov, “Unique combinations of $\beta\alpha\beta$-units and $\Pi$-like modules in proteins and features of their amino acid sequences”, Mol. Biol. (Mosk.), 1 (2018), 36–41 | DOI

[17] A. V. Efimov, “Structural trees for proteins containing-motifs”, Biochemistry (Mosc.), 3 (2008), 23–28 | DOI

[18] M. J. Sternberg, J. M. Thornton, “On the conformation of proteins: the handedness of the beta-strand-alpha-helix-beta-strand unit”, J. Mol. Biol, 105 (1976), 367–382 | DOI

[19] A. G. Murzin, S. E. Brenner, T. Hubbard, C. Chothia, “SCOP: A Structural Classification of Proteins Database for the Investigation of Sequences and Structures”, J. Mol. Biol, 247 (1995), 536–540 | DOI

[20] T. A. Tatusova, T. L. Madden, “BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences”, FEMS Microbiol. Lett., 174 (1999), 247–250 | DOI

[21] R. A. Sayle, E. J. Milner-White, “RASMOL: biomolecular graphics for all”, Trends Biochem. Sci, 20 (1995), 374–376 | DOI

[22] R. Koradi, M. Billeter, K. Wuthrich, “MOLMOL: a program for display and analysis of macromolecular structures”, J. Mol. Graph, 14 (1996), 51–55 | DOI

[23] A. V. Efimov, “Standard conformations of polypeptide chain in irregular regions of proteins”, Mol. Biol. (Mosk.), 20 (1986), 208–216

[24] N. Guex, M. C. Peitsch, “SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling”, Electrophoresis, 18 (1997), 2714–2723 | DOI

[25] A. V. Efimov, “Pseudo-homology of protein standard structures formed by two consecutive-strands”, FEBS Lett., 224 (1987), 372–376 | DOI

[26] V. I. Lim, “Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure”, J. Mol. Biol., 88 (1974), 857–872 | DOI