Identification of novel miRNAs involved in cancer progression and metastasis in clear cell renal cell carcinoma
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 338-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cancer cells alter the metabolic pathways that are feasible for their growth and development. Clear cell renal cell carcinoma, which is characterized by loss or mutation of VHL gene, which promotes cell invasiveness. The global incidence rate of kidney cancer was 319,016 in 2020. MicroRNAs are 21–23nt long, conserved and non-coding molecules, involved in gene expression regulation by RNA silencing and post-transcriptional gene regulation. It has been reported that microRNA dysregulation is associated with clear cell renal cell carcinoma along with various human cancers such as breast cancer, colorectal cancer, ovarian cancer and hepatocellular carcinoma. However, the aim of this study was to identify microRNAs that are differentially expressed between normal kidney tissue and clear cell renal cell carcinoma samples. For this research, a publicly available microRNA dataset was retrieved from ArrayExpress, followed by preprocessing. Mapping, identification of known and novel microRNAs, and quantification were executed using miRDeep2 to perform differential expression analysis using DESeq R/Bioconductor package. Target identification and functional enrichment analysis were conducted using GeneCodis4. In total 2656 microRNAs were found to be differentially expressed, among which upregulated and downregulated microRNAs were 229 and 302 respectively. This study identifies five microRNAs that were significantly related to clear cell renal cell carcinoma, along with a novel set of five microRNAs that have not been investigated previously for clear cell renal cell carcinoma.
@article{MBB_2022_17_2_a8,
     author = {Rana Hazim Hamoode and Tamadher Abbas Rafaa and Rafat Hamdi Abduljaleel and Ahmed AbdulJabbar Suleiman},
     title = {Identification of novel {miRNAs} involved in cancer progression and metastasis in clear cell renal cell carcinoma},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {338--359},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a8/}
}
TY  - JOUR
AU  - Rana Hazim Hamoode
AU  - Tamadher Abbas Rafaa
AU  - Rafat Hamdi Abduljaleel
AU  - Ahmed AbdulJabbar Suleiman
TI  - Identification of novel miRNAs involved in cancer progression and metastasis in clear cell renal cell carcinoma
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 338
EP  - 359
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a8/
LA  - en
ID  - MBB_2022_17_2_a8
ER  - 
%0 Journal Article
%A Rana Hazim Hamoode
%A Tamadher Abbas Rafaa
%A Rafat Hamdi Abduljaleel
%A Ahmed AbdulJabbar Suleiman
%T Identification of novel miRNAs involved in cancer progression and metastasis in clear cell renal cell carcinoma
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 338-359
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a8/
%G en
%F MBB_2022_17_2_a8
Rana Hazim Hamoode; Tamadher Abbas Rafaa; Rafat Hamdi Abduljaleel; Ahmed AbdulJabbar Suleiman. Identification of novel miRNAs involved in cancer progression and metastasis in clear cell renal cell carcinoma. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 338-359. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a8/

[1] R. Tahbaz, M. Schmid, A. S. Merseburger, “Prevention of kidney cancer incidence and recurrence: lifestyle, medication and nutrition”, Curr. Opin. Urol, 28:1 (2018), 62-79 | DOI

[2] P. T. Gomella, W. M. Linehan, M. W. Ball, “Precision surgery and kidney cancer: knowledge of genetic alterations influences surgical management”, Genes, 12:2 (2021), 261 | DOI

[3] U. Capitanio, K. Bensalah, A. Bex, S. A. Boorjian, F. Bray, J. Coleman, J. L. Gore, M. Sun, C. Wood, P. Russo, “Epidemiology of renal cell carcinoma”, European Urology, 75:1 (2019), 74-84 | DOI

[4] W. M. Linehan, L. S. Schmidt, D. R. Crooks, D. Wei, R. Srinivasan, M. Lang, C. J. Ricketts, “The Metabolic Basis of Kidney CancerThe Metabolic Basis of Kidney Cancer”, Cancer Discovery, 9:8 (2019), 1006-1021 | DOI

[5] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”, CA: A Cancer Journal for Clinicians, 71:3 (2021), 209-249 | DOI

[6] M. M. Wolf, Rathmell W. Kimryn, K. E. Beckermann, “Modeling clear cell renal cell carcinoma and therapeutic implications”, Oncogene, 39 (2020), 3413-3426 | DOI

[7] J. J. Hsieh, M. P. Purdue, S. Signoretti, C. Swanton, L. Albiges, M. Schmidinger, Heng D.Y, Larkin J., Ficarra V., “Renal cell carcinoma”, Nat. Rev. Dis. Primers, 3 (2017), 17009 | DOI

[8] L. Eliasson, R. Regazzi, “Micro(RNA) management and mismanagement of the islet”, Journal of Molecular Biology, 432:5 (2020), 1419-1428 | DOI

[9] M. Budakoti, A. S. Panwar, D. Molpa, R. K. Singh, D. Busselberg, A. P. Mishra, H. D. Coutinho, M. Nigam, “Micro-RNA: The darkhorse of cancer”, Cellular Signalling, 83 (2021), 109995 | DOI

[10] U. H. Weidle, A. Nopora, “Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models”, Cancer Genomics Proteomics, 18:3, Suppl. (2021), 349-368 | DOI

[11] Huang Y.X., Nie X.G., Li G.D., Fan D.S., Song L.L., Zhang X.L., “Downregulation of microRNA-182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation”, International Journal of Oncology, 53:6 (2018), 2615-2626 | DOI

[12] R. Ullah, A. Naz, H. S. Akram, Z. Ullah, M. Tariq, A. Mithani, A. Faisal, “Transcriptomic analysis reveals differential gene expression, alternative splicing, and novel exons during mouse trophoblast stem cell differentiation”, Stem Cell Research Therapy, 11 (2020), 342 | DOI

[13] M. Rostovskaya, S. Andrews, W. Reik, P. J. Rugg-Gunn, “Amniogenesis occurs in two independent waves in primates”, Cell Stem Cell, 29:5 (2022), 744-759 | DOI

[14] S. C. Chen, P. L. Kuo, “Bone metastasis from renal cell carcinoma”, International Journal of Molecular Sciences, 17:6 (2016), 987 | DOI

[15] F. Liu, Y. Tang, Q. Guo, J. Chen, “Identification and characterization of microRNAs in phloem and xylem from ramie (Boehmeria nivea)”, Molecular Biology Reports, 47 (2020), 1013-1020 | DOI

[16] A. Kozomara, M. Birgaoanu, S. Griffiths-Jones, “miRBase: from microRNA sequences to function”, Nucleic Acids Research, 47:D1 (2019), D155-D162 | DOI

[17] M. I. Love, W. Huber, S. Anders, “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2”, Genome Biology, 15 (2014), 550 | DOI

[18] A. Garcia-Moreno, R. Lopez-Dominguez, J. A. Villatoro-Garcia, A. Ramirez-Mena, E. Aparicio-Puerta, M. Hackenberg, A. Pascual-Montano, P. Carmona-Saez, “Functional Enrichment Analysis of Regulatory Elements”, Biomedicines, 10:3 (2022), 590 | DOI

[19] Huang C., Li J., Zhang X., Xiong T., Ye J., Yu J., Gui Y., “The miR-140-5p/KLF9/KCNQ1 axis promotes the progression of renal cell carcinoma”, The FASEB Journal, 34 (2020), 10623-10639 | DOI

[20] Y. Bai, H. Li, J. Dong, “Up-regulation of miR-20a weakens inflammation and apoptosis in high-glucose-induced renal tubular cell mediating diabetic kidney disease by repressing CXCL8 expression”, Archives of Physiology and Biochemistry, 128:6 (2022), 1603-1610 | DOI

[21] J. Carlsson, J. Christiansen, S. Davidsson, F. Giunchi, M. Fiorentino, P. Sundqvist, “The potential role of miR-126, miR-21 and miR-10b as prognostic biomarkers in renal cell carcinoma”, Oncology Letters, 17:5 (2019), 4566-4574 | DOI

[22] X. G. Chi, X. X. Meng, D. L. Ding, X. H. Xuan, Y. Z. Chen, Q. Cai, A. Wang, “HMGA1- mediated miR-671-5p targets APC to promote metastasis of clear cell renal cell carcinoma through Wnt signaling”, Neoplasma, 67:1 (2020), 46-53

[23] M. P. Hell, C. R. Thoma, N. Fankhauser, Y. Christinat, T. C. Weber, W. Krek, “miR-28-5p Promotes Chromosomal Instability in VHL-Associated Cancers by Inhibiting Mad2 TranslationpVHL Controls Aneuploidy via miR-28-5p”, Cancer Research, 74:9 (2014), 2432-2443 | DOI

[24] M. Morais, F. Dias, I. Nogueira, A. Leao, N. Goncalves, L. Araujo, S. Granja, F. Baltazar, A. L. Teixeira, R. Medeiros, “Cancer cells' metabolism dynamics in renal cell carcinoma patients' outcome: influence of GLUT-1-Related hsa-miR-144 and hsa-miR186”, Cancers, 13:7 (2021), 1733 | DOI

[25] P. Wang, F. Zhao, X. Nie, J. Liu, Z. Yu, “Knockdown of NUP160 inhibits cell proliferation, induces apoptosis, autophagy and cell migration, and alters the expression and localization of podocyte associated molecules in mouse podocytes”, Gene, 664 (2018), 12-21 | DOI

[26] C. A. Chu, C. T. Lee, J. C. Lee, Y. W. Wang, C. T. Huang, S. H. Lan, P. C. Lin, B. W. Lin, Y. F. Tian, H. S. Liu et al., “MiR-338-5p promotes metastasis of colorectal cancer by inhibition of phosphatidylinositol 3-kinase, catalytic subunit type 3-mediated autophagy pathway”, eBioMedicine, 43 (2019), 270-281 | DOI

[27] I. Block, M. Burton, K. P. Sorensen, L. Andersen, M. J. Larsen, M. Bak, S. Cold, M. Thomassen, Q. Tan, T. A. Kruse, “Association of miR-548c-5p, miR-7-5p, miR-210- 3p, miR-128-3p with recurrence in systemically untreated breast cancer”, Oncotarget, 9 (2018), 9030-9042 | DOI

[28] Y. Zhang, W. Huo, L. Sun, J. Wu, C. Zhang, H. Wang, B. Wang, J. Wei, C. Qu, H. Cao et al., “Targeting miR-148b-5p Inhibits Immunity Microenvironment and Gastric Cancer Progression”, Frontiers in Immunology, 12 (2021), 590447 | DOI

[29] E. Richardsen, S. Andersen, S. Al-Saad, M. Rakaee, Y. Nordby, M. I. Pedersen, N. Ness, L. M. Ingebriktsen, A. Fassina, K. A. Tasken et al., “Low expression of miR-424- 3p is highly correlated with clinical failure in prostate cancer”, Scientific Reports, 9 (2019), 10662 | DOI

[30] R. Fang, Y. Huang, J. Xie, J. Zhang, X. Ji, “Downregulation of miR-29c-3p is associated with a poor prognosis in patients with laryngeal squamous cell carcinoma”, Diagnostic Pathology, 14 (2019), 109 | DOI

[31] Y. Wu, Q. J. Bi, R. Han, Y. Zhang, “Long noncoding RNA KCNQ1OT1 is correlated with human breast cancer cell development through inverse regulation of hsa-miR-107”, Biochemistry and Cell Biology, 98:3 (2020), 338-344 | DOI

[32] R. Q. He, P. R. Wu, X. L. Xiang, X. Yang, H. W. Liang, X. H. Qiu, L. H. Yang, Z. G. Peng, G. Chen, “Downregulated miR-23b-3p expression acts as a predictor of hepatocellular carcinoma progression: A study based on public data and RT-qPCR verification”, International Journal of Molecular Medicine, 41:5 (2018), 2813-2831 | DOI

[33] C. Liu, C. J. Barger, A. R. Karpf, “Foxm1: A multifunctional oncoprotein and emerging therapeutic target in ovarian cancer”, Cancers, 13:12 (2021), 3065 | DOI

[34] X. Yang, S. Yang, J. Song, W. Yang, Y. Ji, F. Zhang, J. Rao, “Dysregulation of miR-23b5p promotes cell proliferation via targeting FOXM1 in hepatocellular carcinoma”, Cell Death Discovery, 7 (2021), 47 | DOI

[35] L. Zhao, P. Jiang, H. Zheng, P. Chen, M. Yang, “Downregulation of miR-499a-5p predicts a poor prognosis of patients with non-small cell lung cancer and restrains the tumorigenesis by targeting fibroblast growth factor 9”, Technology in Cancer Research Treatment, 19 (2020), 1533033820957001 | DOI

[36] L. Zhao, R. Li, S. Xu, Y. Li, P. Zhao, W. Dong, Z. Liu, Q. Zhao, B. Tan, “Tumor suppressor miR-128-3p inhibits metastasis and epithelial-mesenchymal transition by targeting ZEB1 in esophageal squamous-cell cancer”, Acta Biochimica et Biophysica Sinica, 50:2 (2018), 171-180 | DOI

[37] M. Lukamowicz-Rajska, C. Mittmann, M. Prummer, Q. Zhong, J. Bedke, J. Hennenlotter, A. Stenzl, A. Mischo, S. Bihr, M. Schmidinger et al., “MiR-99b-5p expression and response to tyrosine kinase inhibitor treatment in clear cell renal cell carcinoma patients”, Oncotarget, 7 (2016), 78433-78447 | DOI

[38] H. Zhang, H. Zheng, W. Mu, Z. He, B. Yang, Y. Ji, L. Hui, “DUSP 16 ablation arrests the cell cycle and induces cellular senescence”, The FEBS Journal, 282:23 (2015), 4580-4594 | DOI

[39] X. Wei, H. Li, B. Zhang, C. Li, D. Dong, X. Lan, Y. Huang, Y. Bai, F. Lin, X. Zhao et al., “miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development”, RNA Biology, 13:12 (2016), 1300-1309 | DOI

[40] M. Qian, H. Xu, H. Song, H. Xi, L. Fang, “MiR-218-5p promotes breast cancer progression via LRIG1: preprint”, Research Square, 2021 | DOI

[41] H. Wang, Q. Deng, Z. Lv, Y. Ling, X. Hou, Z. Chen, X. Dinglin, S. Ma, D. Li, Y. Wu et al., “N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1”, Molecular Cancer, 18 (2019), 181 | DOI

[42] L. Wang, S. Ge, F. Zhou, “MicroRNA-487a-3p inhibits the growth and invasiveness of oral squamous cell carcinoma by targeting PPM1A”, Bioengineered, 12:1 (2021), 937-947 | DOI

[43] C. Wang, L. Cai, J. Liu, G. Wang, H. Li, X. Wang, W. Xu, M. Ren, L. Feng, P. Liu et al., “MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression”, Cellular Physiology and Biochemistry, 43:6 (2017), 2405-2419 | DOI

[44] C. Liu, G. Li, S. Ren, Z. Su, Y. Wang, Y. Tian, Y. Liu, Y. Qiu, “miR-185-3p regulates the invasion and metastasis of nasopharyngeal carcinoma by targeting WNT2B in vitro”, Oncology Letters, 13:4 (2017), 2631-2636 | DOI