Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_2_a8, author = {Rana Hazim Hamoode and Tamadher Abbas Rafaa and Rafat Hamdi Abduljaleel and Ahmed AbdulJabbar Suleiman}, title = {Identification of novel {miRNAs} involved in cancer progression and metastasis in clear cell renal cell carcinoma}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {338--359}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a8/} }
TY - JOUR AU - Rana Hazim Hamoode AU - Tamadher Abbas Rafaa AU - Rafat Hamdi Abduljaleel AU - Ahmed AbdulJabbar Suleiman TI - Identification of novel miRNAs involved in cancer progression and metastasis in clear cell renal cell carcinoma JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - 338 EP - 359 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a8/ LA - en ID - MBB_2022_17_2_a8 ER -
%0 Journal Article %A Rana Hazim Hamoode %A Tamadher Abbas Rafaa %A Rafat Hamdi Abduljaleel %A Ahmed AbdulJabbar Suleiman %T Identification of novel miRNAs involved in cancer progression and metastasis in clear cell renal cell carcinoma %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P 338-359 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a8/ %G en %F MBB_2022_17_2_a8
Rana Hazim Hamoode; Tamadher Abbas Rafaa; Rafat Hamdi Abduljaleel; Ahmed AbdulJabbar Suleiman. Identification of novel miRNAs involved in cancer progression and metastasis in clear cell renal cell carcinoma. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 338-359. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a8/
[1] R. Tahbaz, M. Schmid, A. S. Merseburger, “Prevention of kidney cancer incidence and recurrence: lifestyle, medication and nutrition”, Curr. Opin. Urol, 28:1 (2018), 62-79 | DOI
[2] P. T. Gomella, W. M. Linehan, M. W. Ball, “Precision surgery and kidney cancer: knowledge of genetic alterations influences surgical management”, Genes, 12:2 (2021), 261 | DOI
[3] U. Capitanio, K. Bensalah, A. Bex, S. A. Boorjian, F. Bray, J. Coleman, J. L. Gore, M. Sun, C. Wood, P. Russo, “Epidemiology of renal cell carcinoma”, European Urology, 75:1 (2019), 74-84 | DOI
[4] W. M. Linehan, L. S. Schmidt, D. R. Crooks, D. Wei, R. Srinivasan, M. Lang, C. J. Ricketts, “The Metabolic Basis of Kidney CancerThe Metabolic Basis of Kidney Cancer”, Cancer Discovery, 9:8 (2019), 1006-1021 | DOI
[5] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”, CA: A Cancer Journal for Clinicians, 71:3 (2021), 209-249 | DOI
[6] M. M. Wolf, Rathmell W. Kimryn, K. E. Beckermann, “Modeling clear cell renal cell carcinoma and therapeutic implications”, Oncogene, 39 (2020), 3413-3426 | DOI
[7] J. J. Hsieh, M. P. Purdue, S. Signoretti, C. Swanton, L. Albiges, M. Schmidinger, Heng D.Y, Larkin J., Ficarra V., “Renal cell carcinoma”, Nat. Rev. Dis. Primers, 3 (2017), 17009 | DOI
[8] L. Eliasson, R. Regazzi, “Micro(RNA) management and mismanagement of the islet”, Journal of Molecular Biology, 432:5 (2020), 1419-1428 | DOI
[9] M. Budakoti, A. S. Panwar, D. Molpa, R. K. Singh, D. Busselberg, A. P. Mishra, H. D. Coutinho, M. Nigam, “Micro-RNA: The darkhorse of cancer”, Cellular Signalling, 83 (2021), 109995 | DOI
[10] U. H. Weidle, A. Nopora, “Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models”, Cancer Genomics Proteomics, 18:3, Suppl. (2021), 349-368 | DOI
[11] Huang Y.X., Nie X.G., Li G.D., Fan D.S., Song L.L., Zhang X.L., “Downregulation of microRNA-182 inhibits cell viability, invasion and angiogenesis in retinoblastoma through inhibition of the PI3K/AKT pathway and CADM2 upregulation”, International Journal of Oncology, 53:6 (2018), 2615-2626 | DOI
[12] R. Ullah, A. Naz, H. S. Akram, Z. Ullah, M. Tariq, A. Mithani, A. Faisal, “Transcriptomic analysis reveals differential gene expression, alternative splicing, and novel exons during mouse trophoblast stem cell differentiation”, Stem Cell Research Therapy, 11 (2020), 342 | DOI
[13] M. Rostovskaya, S. Andrews, W. Reik, P. J. Rugg-Gunn, “Amniogenesis occurs in two independent waves in primates”, Cell Stem Cell, 29:5 (2022), 744-759 | DOI
[14] S. C. Chen, P. L. Kuo, “Bone metastasis from renal cell carcinoma”, International Journal of Molecular Sciences, 17:6 (2016), 987 | DOI
[15] F. Liu, Y. Tang, Q. Guo, J. Chen, “Identification and characterization of microRNAs in phloem and xylem from ramie (Boehmeria nivea)”, Molecular Biology Reports, 47 (2020), 1013-1020 | DOI
[16] A. Kozomara, M. Birgaoanu, S. Griffiths-Jones, “miRBase: from microRNA sequences to function”, Nucleic Acids Research, 47:D1 (2019), D155-D162 | DOI
[17] M. I. Love, W. Huber, S. Anders, “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2”, Genome Biology, 15 (2014), 550 | DOI
[18] A. Garcia-Moreno, R. Lopez-Dominguez, J. A. Villatoro-Garcia, A. Ramirez-Mena, E. Aparicio-Puerta, M. Hackenberg, A. Pascual-Montano, P. Carmona-Saez, “Functional Enrichment Analysis of Regulatory Elements”, Biomedicines, 10:3 (2022), 590 | DOI
[19] Huang C., Li J., Zhang X., Xiong T., Ye J., Yu J., Gui Y., “The miR-140-5p/KLF9/KCNQ1 axis promotes the progression of renal cell carcinoma”, The FASEB Journal, 34 (2020), 10623-10639 | DOI
[20] Y. Bai, H. Li, J. Dong, “Up-regulation of miR-20a weakens inflammation and apoptosis in high-glucose-induced renal tubular cell mediating diabetic kidney disease by repressing CXCL8 expression”, Archives of Physiology and Biochemistry, 128:6 (2022), 1603-1610 | DOI
[21] J. Carlsson, J. Christiansen, S. Davidsson, F. Giunchi, M. Fiorentino, P. Sundqvist, “The potential role of miR-126, miR-21 and miR-10b as prognostic biomarkers in renal cell carcinoma”, Oncology Letters, 17:5 (2019), 4566-4574 | DOI
[22] X. G. Chi, X. X. Meng, D. L. Ding, X. H. Xuan, Y. Z. Chen, Q. Cai, A. Wang, “HMGA1- mediated miR-671-5p targets APC to promote metastasis of clear cell renal cell carcinoma through Wnt signaling”, Neoplasma, 67:1 (2020), 46-53
[23] M. P. Hell, C. R. Thoma, N. Fankhauser, Y. Christinat, T. C. Weber, W. Krek, “miR-28-5p Promotes Chromosomal Instability in VHL-Associated Cancers by Inhibiting Mad2 TranslationpVHL Controls Aneuploidy via miR-28-5p”, Cancer Research, 74:9 (2014), 2432-2443 | DOI
[24] M. Morais, F. Dias, I. Nogueira, A. Leao, N. Goncalves, L. Araujo, S. Granja, F. Baltazar, A. L. Teixeira, R. Medeiros, “Cancer cells' metabolism dynamics in renal cell carcinoma patients' outcome: influence of GLUT-1-Related hsa-miR-144 and hsa-miR186”, Cancers, 13:7 (2021), 1733 | DOI
[25] P. Wang, F. Zhao, X. Nie, J. Liu, Z. Yu, “Knockdown of NUP160 inhibits cell proliferation, induces apoptosis, autophagy and cell migration, and alters the expression and localization of podocyte associated molecules in mouse podocytes”, Gene, 664 (2018), 12-21 | DOI
[26] C. A. Chu, C. T. Lee, J. C. Lee, Y. W. Wang, C. T. Huang, S. H. Lan, P. C. Lin, B. W. Lin, Y. F. Tian, H. S. Liu et al., “MiR-338-5p promotes metastasis of colorectal cancer by inhibition of phosphatidylinositol 3-kinase, catalytic subunit type 3-mediated autophagy pathway”, eBioMedicine, 43 (2019), 270-281 | DOI
[27] I. Block, M. Burton, K. P. Sorensen, L. Andersen, M. J. Larsen, M. Bak, S. Cold, M. Thomassen, Q. Tan, T. A. Kruse, “Association of miR-548c-5p, miR-7-5p, miR-210- 3p, miR-128-3p with recurrence in systemically untreated breast cancer”, Oncotarget, 9 (2018), 9030-9042 | DOI
[28] Y. Zhang, W. Huo, L. Sun, J. Wu, C. Zhang, H. Wang, B. Wang, J. Wei, C. Qu, H. Cao et al., “Targeting miR-148b-5p Inhibits Immunity Microenvironment and Gastric Cancer Progression”, Frontiers in Immunology, 12 (2021), 590447 | DOI
[29] E. Richardsen, S. Andersen, S. Al-Saad, M. Rakaee, Y. Nordby, M. I. Pedersen, N. Ness, L. M. Ingebriktsen, A. Fassina, K. A. Tasken et al., “Low expression of miR-424- 3p is highly correlated with clinical failure in prostate cancer”, Scientific Reports, 9 (2019), 10662 | DOI
[30] R. Fang, Y. Huang, J. Xie, J. Zhang, X. Ji, “Downregulation of miR-29c-3p is associated with a poor prognosis in patients with laryngeal squamous cell carcinoma”, Diagnostic Pathology, 14 (2019), 109 | DOI
[31] Y. Wu, Q. J. Bi, R. Han, Y. Zhang, “Long noncoding RNA KCNQ1OT1 is correlated with human breast cancer cell development through inverse regulation of hsa-miR-107”, Biochemistry and Cell Biology, 98:3 (2020), 338-344 | DOI
[32] R. Q. He, P. R. Wu, X. L. Xiang, X. Yang, H. W. Liang, X. H. Qiu, L. H. Yang, Z. G. Peng, G. Chen, “Downregulated miR-23b-3p expression acts as a predictor of hepatocellular carcinoma progression: A study based on public data and RT-qPCR verification”, International Journal of Molecular Medicine, 41:5 (2018), 2813-2831 | DOI
[33] C. Liu, C. J. Barger, A. R. Karpf, “Foxm1: A multifunctional oncoprotein and emerging therapeutic target in ovarian cancer”, Cancers, 13:12 (2021), 3065 | DOI
[34] X. Yang, S. Yang, J. Song, W. Yang, Y. Ji, F. Zhang, J. Rao, “Dysregulation of miR-23b5p promotes cell proliferation via targeting FOXM1 in hepatocellular carcinoma”, Cell Death Discovery, 7 (2021), 47 | DOI
[35] L. Zhao, P. Jiang, H. Zheng, P. Chen, M. Yang, “Downregulation of miR-499a-5p predicts a poor prognosis of patients with non-small cell lung cancer and restrains the tumorigenesis by targeting fibroblast growth factor 9”, Technology in Cancer Research Treatment, 19 (2020), 1533033820957001 | DOI
[36] L. Zhao, R. Li, S. Xu, Y. Li, P. Zhao, W. Dong, Z. Liu, Q. Zhao, B. Tan, “Tumor suppressor miR-128-3p inhibits metastasis and epithelial-mesenchymal transition by targeting ZEB1 in esophageal squamous-cell cancer”, Acta Biochimica et Biophysica Sinica, 50:2 (2018), 171-180 | DOI
[37] M. Lukamowicz-Rajska, C. Mittmann, M. Prummer, Q. Zhong, J. Bedke, J. Hennenlotter, A. Stenzl, A. Mischo, S. Bihr, M. Schmidinger et al., “MiR-99b-5p expression and response to tyrosine kinase inhibitor treatment in clear cell renal cell carcinoma patients”, Oncotarget, 7 (2016), 78433-78447 | DOI
[38] H. Zhang, H. Zheng, W. Mu, Z. He, B. Yang, Y. Ji, L. Hui, “DUSP 16 ablation arrests the cell cycle and induces cellular senescence”, The FEBS Journal, 282:23 (2015), 4580-4594 | DOI
[39] X. Wei, H. Li, B. Zhang, C. Li, D. Dong, X. Lan, Y. Huang, Y. Bai, F. Lin, X. Zhao et al., “miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development”, RNA Biology, 13:12 (2016), 1300-1309 | DOI
[40] M. Qian, H. Xu, H. Song, H. Xi, L. Fang, “MiR-218-5p promotes breast cancer progression via LRIG1: preprint”, Research Square, 2021 | DOI
[41] H. Wang, Q. Deng, Z. Lv, Y. Ling, X. Hou, Z. Chen, X. Dinglin, S. Ma, D. Li, Y. Wu et al., “N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1”, Molecular Cancer, 18 (2019), 181 | DOI
[42] L. Wang, S. Ge, F. Zhou, “MicroRNA-487a-3p inhibits the growth and invasiveness of oral squamous cell carcinoma by targeting PPM1A”, Bioengineered, 12:1 (2021), 937-947 | DOI
[43] C. Wang, L. Cai, J. Liu, G. Wang, H. Li, X. Wang, W. Xu, M. Ren, L. Feng, P. Liu et al., “MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression”, Cellular Physiology and Biochemistry, 43:6 (2017), 2405-2419 | DOI
[44] C. Liu, G. Li, S. Ren, Z. Su, Y. Wang, Y. Tian, Y. Liu, Y. Qiu, “miR-185-3p regulates the invasion and metastasis of nasopharyngeal carcinoma by targeting WNT2B in vitro”, Oncology Letters, 13:4 (2017), 2631-2636 | DOI