Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_2_a7, author = {D. E. Romanov and N. E. Skoblikov}, title = {Linkage disequilibrium in targeted sequencing}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {325--337}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a7/} }
D. E. Romanov; N. E. Skoblikov. Linkage disequilibrium in targeted sequencing. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 325-337. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a7/
[1] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S.M. Leung, E. H.Y. Lau, J. Y. Wong et al, “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia”, N. Engl. J. Med., 382:13 (2020), 1199–1207 | DOI
[2] A. Rahimi, A. Mirzazadeh, S. Tavakolpour, “Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection”, Genomics., 113:1 (2021), 1221–1232 | DOI
[3] D. L. Moisova, V. N. Gorodin, N. E. Skoblikov, S. V. Zotov, Y. V. Tikhonenko, “Peculiarities of polymorphism of certain genes of the hemostasis system in patients with COVID-19”, Bashkortostan Medical Journal., 16:6 (2021), 35–40 (in Russ.)
[4] M. Liao, Y. Liu, J. Yuan, Y. Wen, G. Xu, J. Zhao, L. Chen, J. Li, X. Wang, F. Wang et al, “Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19”, Nature Medicine., 26:6 (2020), 842–844 | DOI
[5] S. Villapol, “Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome”, Transl. Res., 226 (2020), 57–69 | DOI
[6] V. Matzaraki, V. Kumar, C. Wijmenga, A. Zhernakova, “The MHC locus and genetic susceptibility to autoimmune and infectious diseases”, Genome Biology., 18:1 (2021), 76 | DOI
[7] D. Ellinghaus, F. Degenhardt, L. Bujanda, M. Buti, A. Albillos, P. Invernizzi, J. Fernandez, D. Prati, G. Baselli, R. Asselta et al, “Genomewide Association Study of Severe Covid-19 with Respiratory Failure”, N. Engl. J. Med., 383:16 (2020), 1522–1534 | DOI
[8] H. Zeberg, S. Paabo, “A genomic region associated with protection against severe COVID-19 is inherited from Neandertals”, Proc. Natl. Acad. Sci. USA., 118:9 (2021), e2026309118 | DOI
[9] H. Zeberg, S. Paabo, “The major genetic risk factor for severe COVID-19 is inherited from Neanderthals”, Nature., 587:7835 (2020), 610–612 | DOI
[10] E. Pairo-Castineira, S. Clohisey, L. Klaric, A. D. Bretherick, K. Rawlik, D. Pasko, S. Walker, N. Parkinson, M. H. Fourman, C. D. Russell et al, “Genetic mechanisms of critical illness in COVID-19”, Nature., 591:7848 (2021), 92–98 | DOI
[11] A. Kousathanas, E. Pairo-Castineira, K. Rawlik, A. Stuckey, C. A. Odhams, S. Walker, C. D. Russell, T. Malinauskas, Y. Wu, J. Millar et al, “Whole genome sequencing reveals host factors underlying critical COVID-19”, Nature., 607 (2022), 97–103 | DOI
[12] M. E.K. Niemi, J. Karjalainen, R. G. Liao, B. M. Neale, M. Daly, A. Ganna, G. A. Pathak, S. J. Andrews, M. Kanai, K. Veerapen et al, “Mapping the human genetic architecture of COVID-19”, Nature., 600:7889 (2021), 472–477 | DOI
[13] M. Mousa, H. Vurivi, H. Kannout, M. Uddin, N. Alkaabi, B. Mahboub, G. K. Tay, H. S. Alsafar, “Genome-wide association study of hospitalized COVID-19 patients in the United Arab Emirates”, EBioMedicine., 74 (2021), 103695 | DOI
[14] R. Secolin, T. K. de Araujo, M. C. Gonsales, C. S. Rocha, M. Naslavsky, L. Marco, M. A.C. Bicalho, V. L. Vazquez, M. Zatz, W. A. Silva, I. Lopes-Cendes, “Genetic variability in COVID-19-related genes in the Brazilian population”, Hum. Genome. Var., 8 (2021), 15 | DOI
[15] Consortium International HapMap, “A haplotype map of the human genome”, Nature, 437(7063 (2005), 1299–1320 | DOI
[16] C. C. Buchanan, E. S. Torstenson, W. S. Bush, M. D. Ritchie, “A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data”, J. Am. Med. Inform. Assoc., 19:2 (2012), 289–294 | DOI
[17] C. M. Justice, A. M. Musolf, A. Cuellar, W. Lattanzi, E. Simeonov, R. Kaneva, J. Paschall, M. Cunningham, A. O.M. Wilkie, A. F. Wilson et al, “Targeted Sequencing of Candidate Regions Associated with Sagittal and Metopic Nonsyndromic Craniosynostosis”, Genes., 13:5 (2022), 816 | DOI
[18] D. J. Schaid, W. Chen, N. B. Larson, “From genome-wide associations to candidate causal variants by statistical fine-mapping”, Nat. Rev. Genet., 19:8 (2018), 491–504 | DOI
[19] J. C. Barrett, B. Fry, J. Maller, M. J. Daly, “Haploview”, Bioinformatics., 21:2 (2005), analysis and visualization of LD and haplotype maps | DOI
[20] J. H. Shin, S. Blay, B. McNeney, J. Graham, “LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms”, Journal of Statistical Software, 16 (2006), 1–9 | DOI
[21] S. S. Dong, W. M. He, J. J. Ji, C. Zhang, Y. Guo, T. L. Yang, “LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files”, Brief. Bioinform., 22:4 (2021), bbaa227 | DOI
[22] E. Birney, T. D. Andrews, P. Bevan, M. Caccamo, Y. Chen, L. Clarke, G. Coates, J. Cuff, V. Curwen, T. Cutts et al, “An overview of Ensembl”, Genome Research., 14:5 (2004), 925–928 | DOI
[23] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, D. Haussler, “The human genome browser at UCSC”, Genome Research., 12:6 (2002), 996–1006 | DOI
[24] T. Kitamoto, A. Kitamoto, M. Yoneda, H. Hyogo, H. Ochi, S. Mizusawa, T. Ueno, K. Nakao, A. Sekine, K. Chayama et al, “Targeted next-generation sequencing and fine linkage disequilibrium mapping reveals association of PNPLA3 and PARVB with the severity of nonalcoholic fatty liver disease”, J. Hum. Genet., 59:5 (2014), 241–246 | DOI
[25] F. Bewicke-Copley, E. Arjun Kumar, G. Palladino, K. Korfi, J. Wang, “Applications and analysis of targeted genomic sequencing in cancer studies”, Comput. Struct. Biotechnol. J., 17 (2019), 1348–1359 | DOI
[26] Qin D., “Next-generation sequencing and its clinical application”, Cancer Biol. Med., 16:1 (2019), 4–10 | DOI
[27] Y. Luo, M. Kanai, W. Choi, X. Li, S. Sakaue, K. Yamamoto, K. Ogawa, M. Gutierrez-Arcelus, P. K. Gregersen, P. E. Stuart et al, “A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response”, Nature Genetics., 53:10 (2021), 1504–1516 | DOI
[28] C. M. Justice, J. Kim, S. D. Kim, K. Kim, G. Yagnik, A. Cuellar, B. Carrington, C. L. Lu, R. Sood, S. A. Boyadjiev, A. F. Wilson, “A variant associated with sagittal nonsyndromic craniosynostosis alters the regulatory function of a non-coding element”, Am. J. Med. Genet. A., 173:11 (2017), 2893–2897 | DOI
[29] C. M. Justice, G. Yagnik, Y. Kim, I. Peter, E. W. Jabs, M. Erazo, X. Ye, E. Ainehsazan, L. Shi, M. L. Cunningham et al, “A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9”, Nat. Genet., 44:12 (2012), 1360–1364 | DOI
[30] M. Byrska-Bishop, U. S. Evani, X. Zhao, A. O. Basile, H. J. Abel, A. A. Regier, A. Corvelo, W. E. Clarke, R. Musunuri, K. Nagulapalli et al, “High coverage whole genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios”, Cell., 185:18 (2022), 3426–3440 | DOI
[31] D. J. Downes, A. R. Cross, P. Hua, N. Roberts, R. Schwessinger, A. J. Cutler, A. M. Munis, J. Brown, O. Mielczarek, C. E. de Andrea et al, “Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus”, Nat. Genet., 53:11 (2021), 1606–1615 | DOI
[32] I. M. Fink-Baldauf, W. D. Stuart, J. J. Brewington, M. Guo, Y. Maeda, “CRISPRi links COVID-19 GWAS loci to LZTFL1 and RAVER1”, EBioMedicine., 75 (2022), 103806 | DOI
[33] S. Kasela, Z. Daniloski, S. Bollepalli, T. X. Jordan, B. R. tenOever, N. E. Sanjana, T. Lappalainen, “Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus”, Genome Biol., 22:1 (2021), 242 | DOI
[34] S. Semiz, “SIT1 transporter as a potential novel target in treatment of COVID-19”, Biomol. Concepts, 12:1 (2021), 156–163 | DOI