Linkage disequilibrium in targeted sequencing
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 325-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an approach for optimizing the development of gene diagnostic panels, which is based on the construction of non-equilibrium linkage maps. In the process of gene selection we essentially use genome-wide association analysis (GWAS). Whole-genome analysis of associations makes it possible to reveal the relationship of genomic variants with the studied phenotype. However, the nucleotide variants that showed the highest degree of association can only be statistically associated with the phenotype, not being the true cause of the phenotype. In this case, they may be in the block of linked inheritance with nucleotide variants that really affect the manifestation of the phenotype. The construction of maps of non-equilibrium linkage of nucleotides makes it possible to optimally determine the boundaries of linkage blocks, in which the desired variants fall. The aim of this study was to optimize the demarcation of genomic loci to create targeted panels aimed at predicting susceptibility to SARS-CoV-2 and the severity of COVID-19. The proposed method for selecting loci for a target panel, taking into account nonequilibrium linkage, makes it possible to use the phenomenon of nonequilibrium linkage in order to maximally cover the regions involved in the development of the phenotype, while simultaneously minimizing the length of these regions, and, at the same time, the cost of sequencing.
@article{MBB_2022_17_2_a7,
     author = {D. E. Romanov and N. E. Skoblikov},
     title = {Linkage disequilibrium in targeted sequencing},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {325--337},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a7/}
}
TY  - JOUR
AU  - D. E. Romanov
AU  - N. E. Skoblikov
TI  - Linkage disequilibrium in targeted sequencing
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 325
EP  - 337
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a7/
LA  - ru
ID  - MBB_2022_17_2_a7
ER  - 
%0 Journal Article
%A D. E. Romanov
%A N. E. Skoblikov
%T Linkage disequilibrium in targeted sequencing
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 325-337
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a7/
%G ru
%F MBB_2022_17_2_a7
D. E. Romanov; N. E. Skoblikov. Linkage disequilibrium in targeted sequencing. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 325-337. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a7/

[1] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S.M. Leung, E. H.Y. Lau, J. Y. Wong et al, “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia”, N. Engl. J. Med., 382:13 (2020), 1199–1207 | DOI

[2] A. Rahimi, A. Mirzazadeh, S. Tavakolpour, “Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection”, Genomics., 113:1 (2021), 1221–1232 | DOI

[3] D. L. Moisova, V. N. Gorodin, N. E. Skoblikov, S. V. Zotov, Y. V. Tikhonenko, “Peculiarities of polymorphism of certain genes of the hemostasis system in patients with COVID-19”, Bashkortostan Medical Journal., 16:6 (2021), 35–40 (in Russ.)

[4] M. Liao, Y. Liu, J. Yuan, Y. Wen, G. Xu, J. Zhao, L. Chen, J. Li, X. Wang, F. Wang et al, “Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19”, Nature Medicine., 26:6 (2020), 842–844 | DOI

[5] S. Villapol, “Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome”, Transl. Res., 226 (2020), 57–69 | DOI

[6] V. Matzaraki, V. Kumar, C. Wijmenga, A. Zhernakova, “The MHC locus and genetic susceptibility to autoimmune and infectious diseases”, Genome Biology., 18:1 (2021), 76 | DOI

[7] D. Ellinghaus, F. Degenhardt, L. Bujanda, M. Buti, A. Albillos, P. Invernizzi, J. Fernandez, D. Prati, G. Baselli, R. Asselta et al, “Genomewide Association Study of Severe Covid-19 with Respiratory Failure”, N. Engl. J. Med., 383:16 (2020), 1522–1534 | DOI

[8] H. Zeberg, S. Paabo, “A genomic region associated with protection against severe COVID-19 is inherited from Neandertals”, Proc. Natl. Acad. Sci. USA., 118:9 (2021), e2026309118 | DOI

[9] H. Zeberg, S. Paabo, “The major genetic risk factor for severe COVID-19 is inherited from Neanderthals”, Nature., 587:7835 (2020), 610–612 | DOI

[10] E. Pairo-Castineira, S. Clohisey, L. Klaric, A. D. Bretherick, K. Rawlik, D. Pasko, S. Walker, N. Parkinson, M. H. Fourman, C. D. Russell et al, “Genetic mechanisms of critical illness in COVID-19”, Nature., 591:7848 (2021), 92–98 | DOI

[11] A. Kousathanas, E. Pairo-Castineira, K. Rawlik, A. Stuckey, C. A. Odhams, S. Walker, C. D. Russell, T. Malinauskas, Y. Wu, J. Millar et al, “Whole genome sequencing reveals host factors underlying critical COVID-19”, Nature., 607 (2022), 97–103 | DOI

[12] M. E.K. Niemi, J. Karjalainen, R. G. Liao, B. M. Neale, M. Daly, A. Ganna, G. A. Pathak, S. J. Andrews, M. Kanai, K. Veerapen et al, “Mapping the human genetic architecture of COVID-19”, Nature., 600:7889 (2021), 472–477 | DOI

[13] M. Mousa, H. Vurivi, H. Kannout, M. Uddin, N. Alkaabi, B. Mahboub, G. K. Tay, H. S. Alsafar, “Genome-wide association study of hospitalized COVID-19 patients in the United Arab Emirates”, EBioMedicine., 74 (2021), 103695 | DOI

[14] R. Secolin, T. K. de Araujo, M. C. Gonsales, C. S. Rocha, M. Naslavsky, L. Marco, M. A.C. Bicalho, V. L. Vazquez, M. Zatz, W. A. Silva, I. Lopes-Cendes, “Genetic variability in COVID-19-related genes in the Brazilian population”, Hum. Genome. Var., 8 (2021), 15 | DOI

[15] Consortium International HapMap, “A haplotype map of the human genome”, Nature, 437(7063 (2005), 1299–1320 | DOI

[16] C. C. Buchanan, E. S. Torstenson, W. S. Bush, M. D. Ritchie, “A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data”, J. Am. Med. Inform. Assoc., 19:2 (2012), 289–294 | DOI

[17] C. M. Justice, A. M. Musolf, A. Cuellar, W. Lattanzi, E. Simeonov, R. Kaneva, J. Paschall, M. Cunningham, A. O.M. Wilkie, A. F. Wilson et al, “Targeted Sequencing of Candidate Regions Associated with Sagittal and Metopic Nonsyndromic Craniosynostosis”, Genes., 13:5 (2022), 816 | DOI

[18] D. J. Schaid, W. Chen, N. B. Larson, “From genome-wide associations to candidate causal variants by statistical fine-mapping”, Nat. Rev. Genet., 19:8 (2018), 491–504 | DOI

[19] J. C. Barrett, B. Fry, J. Maller, M. J. Daly, “Haploview”, Bioinformatics., 21:2 (2005), analysis and visualization of LD and haplotype maps | DOI

[20] J. H. Shin, S. Blay, B. McNeney, J. Graham, “LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms”, Journal of Statistical Software, 16 (2006), 1–9 | DOI

[21] S. S. Dong, W. M. He, J. J. Ji, C. Zhang, Y. Guo, T. L. Yang, “LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files”, Brief. Bioinform., 22:4 (2021), bbaa227 | DOI

[22] E. Birney, T. D. Andrews, P. Bevan, M. Caccamo, Y. Chen, L. Clarke, G. Coates, J. Cuff, V. Curwen, T. Cutts et al, “An overview of Ensembl”, Genome Research., 14:5 (2004), 925–928 | DOI

[23] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, D. Haussler, “The human genome browser at UCSC”, Genome Research., 12:6 (2002), 996–1006 | DOI

[24] T. Kitamoto, A. Kitamoto, M. Yoneda, H. Hyogo, H. Ochi, S. Mizusawa, T. Ueno, K. Nakao, A. Sekine, K. Chayama et al, “Targeted next-generation sequencing and fine linkage disequilibrium mapping reveals association of PNPLA3 and PARVB with the severity of nonalcoholic fatty liver disease”, J. Hum. Genet., 59:5 (2014), 241–246 | DOI

[25] F. Bewicke-Copley, E. Arjun Kumar, G. Palladino, K. Korfi, J. Wang, “Applications and analysis of targeted genomic sequencing in cancer studies”, Comput. Struct. Biotechnol. J., 17 (2019), 1348–1359 | DOI

[26] Qin D., “Next-generation sequencing and its clinical application”, Cancer Biol. Med., 16:1 (2019), 4–10 | DOI

[27] Y. Luo, M. Kanai, W. Choi, X. Li, S. Sakaue, K. Yamamoto, K. Ogawa, M. Gutierrez-Arcelus, P. K. Gregersen, P. E. Stuart et al, “A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response”, Nature Genetics., 53:10 (2021), 1504–1516 | DOI

[28] C. M. Justice, J. Kim, S. D. Kim, K. Kim, G. Yagnik, A. Cuellar, B. Carrington, C. L. Lu, R. Sood, S. A. Boyadjiev, A. F. Wilson, “A variant associated with sagittal nonsyndromic craniosynostosis alters the regulatory function of a non-coding element”, Am. J. Med. Genet. A., 173:11 (2017), 2893–2897 | DOI

[29] C. M. Justice, G. Yagnik, Y. Kim, I. Peter, E. W. Jabs, M. Erazo, X. Ye, E. Ainehsazan, L. Shi, M. L. Cunningham et al, “A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9”, Nat. Genet., 44:12 (2012), 1360–1364 | DOI

[30] M. Byrska-Bishop, U. S. Evani, X. Zhao, A. O. Basile, H. J. Abel, A. A. Regier, A. Corvelo, W. E. Clarke, R. Musunuri, K. Nagulapalli et al, “High coverage whole genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios”, Cell., 185:18 (2022), 3426–3440 | DOI

[31] D. J. Downes, A. R. Cross, P. Hua, N. Roberts, R. Schwessinger, A. J. Cutler, A. M. Munis, J. Brown, O. Mielczarek, C. E. de Andrea et al, “Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus”, Nat. Genet., 53:11 (2021), 1606–1615 | DOI

[32] I. M. Fink-Baldauf, W. D. Stuart, J. J. Brewington, M. Guo, Y. Maeda, “CRISPRi links COVID-19 GWAS loci to LZTFL1 and RAVER1”, EBioMedicine., 75 (2022), 103806 | DOI

[33] S. Kasela, Z. Daniloski, S. Bollepalli, T. X. Jordan, B. R. tenOever, N. E. Sanjana, T. Lappalainen, “Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus”, Genome Biol., 22:1 (2021), 242 | DOI

[34] S. Semiz, “SIT1 transporter as a potential novel target in treatment of COVID-19”, Biomol. Concepts, 12:1 (2021), 156–163 | DOI