On classification and taxonomy of coronaviruses (\emph{Riboviria, Nidovirales, Coronaviridae}) with special focus on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 289-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

Coronaviruses are highly virulent and therefore important human and veterinary pathogens worldwide. This study presents the first natural hierarchical classification of Coronaviridae. We also demonstrate a “one-step” solution to incorporate the principles of binomial (binary) nomenclature into taxonomy of Coronaviridae. We strongly support the complete rejection of the non-taxonomic category “virus” in any future taxonomic study in virology. This will aid future recognition of numerous virus species, particularly in the currently monotypic subgenus Sarbecovirus. Commenting on the nature of SARS-CoV-2, the authors emphasize that no member of the Sarbecovirus clade is an ancestor of this virus, and humans are the only natural known host.
@article{MBB_2022_17_2_a6,
     author = {E. V. Mavrodiev and M. L. Tursky and N. E. Mavrodiev and L. Schroder and A. P. Laktionov and M. C. Ebach and D. M. Williams},
     title = {On classification and taxonomy of coronaviruses {(\emph{Riboviria,} {Nidovirales,} {Coronaviridae})} with special focus on severe acute respiratory syndrome-related coronavirus 2 {(SARS-CoV-2)}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {289--311},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a6/}
}
TY  - JOUR
AU  - E. V. Mavrodiev
AU  - M. L. Tursky
AU  - N. E. Mavrodiev
AU  - L. Schroder
AU  - A. P. Laktionov
AU  - M. C. Ebach
AU  - D. M. Williams
TI  - On classification and taxonomy of coronaviruses (\emph{Riboviria, Nidovirales, Coronaviridae}) with special focus on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 289
EP  - 311
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a6/
LA  - en
ID  - MBB_2022_17_2_a6
ER  - 
%0 Journal Article
%A E. V. Mavrodiev
%A M. L. Tursky
%A N. E. Mavrodiev
%A L. Schroder
%A A. P. Laktionov
%A M. C. Ebach
%A D. M. Williams
%T On classification and taxonomy of coronaviruses (\emph{Riboviria, Nidovirales, Coronaviridae}) with special focus on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 289-311
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a6/
%G en
%F MBB_2022_17_2_a6
E. V. Mavrodiev; M. L. Tursky; N. E. Mavrodiev; L. Schroder; A. P. Laktionov; M. C. Ebach; D. M. Williams. On classification and taxonomy of coronaviruses (\emph{Riboviria, Nidovirales, Coronaviridae}) with special focus on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 289-311. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a6/

[1] M. J. Adams, E. J. Lefkowitz, A. M.Q. King, B. Harrach, R. L. Harrison, N. J. Knowles, A. M. Kropinski, M. Krupovic, J. H. Kuhn, A. R. Mushegian et al, “50 years of the International Committee on Taxonomy of Viruses: progress and prospects”, Arch. Virol, 162:5 (2017), 1441–1446 | DOI

[2] P. J. Walker, S. G. Siddell, E. J. Lefkowitz, A. R. Mushegian, D. M. Dempsey, B. E. Dutilh, B. Harrach, R. L. Harrison, R. C. Hendrickson, S. Junglen et al, “Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses”, Arch. Virol, 164:9 (2019), 2417–2429 | DOI

[3] A. E. Gorbalenya, S. C. Baker, R. S. Baric, R. J. de Groot, C. Drosten, A. A. Gulyaeva, B. L. Haagmans, C. Lauber, A. M. Leontovich, B. W. Neuman et al, “The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2”, Nat. Microbiol, 5:4 (2020), 536–544 | DOI

[4] A. E. Gorbalenya, M. Krupovic, A. Mushegian, A. M. Kropinski, S. G. Siddell, A. Varsani, M. J. Adams, A. J. Davison, B. E. Dutilh, B. Harrach et al, “The new scope of virus taxonomy, partitioning the virosphere into 15 hierarchical ranks”, Nat. Microbiol, 5:6 (2020), 668–674 | DOI

[5] S. G. Siddell, P. J. Walker, E. J. Lefkowitz, A. R. Mushegian, M. J. Adams, B. E. Dutilh, A. E. Gorbalenya, B. Harrach, R. L. Harrison, S. Junglen et al, “Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018)”, Arch. Virol, 164:3 (2019), 943–946 | DOI

[6] S. G. Siddell, P. J. Walker, E. J. Lefkowitz, A. R. Mushegian, B. E. Dutilh, B. Harrach, R. L. Harrison, S. Junglen, N. J. Knowles, A. M. Kropinski et al, “Binomial nomenclature for virus species, a consultation”, Arch. Virol, 165:2 (2020), 519–525 | DOI

[7] S. G. Siddell, P. J. Walker, E. J. Lefkowitz, A. R. Mushegian, B. E. Dutilh, B. Harrach, R. L. Harrison, S. Junglen, N. J. Knowles, A. M. Kropinski et al, “Correction to: Binomial nomenclature for virus species, a consultation”, Arch. Virol, 165:5 (2020) | DOI

[8] N. J. MacLachlan, E. J. Dubovi, S. W. Barthold, D. F. Swayne, R. J. Winton, Fenner's Veterinary Virology, 5th edn., Elsevier Inc, Amsterdam, 2016

[9] T. Postler, A. N. Clawson, G. K. Amarasinghe, C. F. Basler, S. Bavari, M. Benko, K. R. Blasdell, T. Briese, M. J. Buchmeier, A. Bukreyev et al, “Possibility and challenges of conversion of current virus species names to Linnaean binomials”, Syst. Biol, 66:3 (2017), 463–473 | DOI

[10] R. C. Edgar, J. Taylor, V. Lin, T. Altman, P. Barbera, D. Meleshko, D. Lohr, G. Novakovsky, B. Buchfink, B. Al-Shayeb et al, Petabase-scale sequence alignment catalyses viral discovery, bioRxiv, 2020 | DOI

[11] K. Bukhari, G. Mulley, A. A. Gulyaeva, L. Zhao, G. Shu, J. Jiang, B. W. Neuman, “Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus”, Virology, 524 (2018), 160–171 | DOI

[12] T. Li, D. Liu, Y. Yang, J. Guo, Y. Feng, X. Zhang, S. Cheng, J. Feng, “Phylogenetic supertree reveals detailed evolution of SARS-CoV-2”, Sci. Rep, 10:1 (2020) | DOI

[13] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu et al, “Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding”, Lancet, 395:10224 (2020), 565–574 | DOI

[14] F. Wu, S. Zhao, B. Yu, Y. M. Chen, W. Wang, Z. G. Song, Y. Hu, Z. W. Tao, J. H. Tian, Y. Y. Pei et al, “A new coronavirus associated with human respiratory disease in China”, Nature, 579:7798 (2020), 265–269 | DOI

[15] I. J. Kitching, P. Forey, P. L. Forey, C. Humphries, Williams D. M. Cladistics, the Theory and Practice of Parsimony Analysis, Oxford University Press, Oxford–New York, 1998, 228 pp.

[16] D. M. Williams, M. C. Ebach, Foundations of Systematics and Biogeography, Springer, New York, 2008, 310 pp.

[17] D. M. Williams, Ebach M. C. Cladistics, A guide to biological classification, Cambridge University Press, Cambridge, 2020, 452 pp.

[18] A. Rambaut, E. C. Holmes, A. O'Toole, V. Hill, J. T. McCrone, C. Ruis, L. du Plessis, O. G. Pybus, “A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology”, Nat. Microbiol, 5:11 (2020), 1403–1407 | DOI

[19] J. S. Farris, “The Logical Basis of Phylogenetic Analysis”, Advances in Cladistics, v. 2, eds. Platnick N. I., V. Funk, Columbia University Press, New York, 1983, 7–36

[20] A. V.Z. Brower, “Evolution is not a necessary assumption of cladistics”, Cladistics, 16:1 (2000), 143–154 | DOI

[21] E. V. Mavrodiev, C. Dell, L. Schroder, “A laid-back trip through the Hennigian Forests”, PeerJ, 2017, no. 5 | DOI

[22] G. Nelson, Platnick N., Systematics and Biogeography, Cladistics and Vicariance, Columbia University Press, New York, 1981

[23] G. Nelson, N. Platnick, Three-taxon statements, a more precise use of parsimony?, Cladistics, 7:4 (1991), 351–366 | DOI

[24] J. Felsenstein, “Evolutionary trees from DNA sequences: a maximum likelihood approach”, J. Mol. Evol, 17:6 (1981), 368–376 | DOI

[25] Felsenstein J, Inferring Phylogenies, Oxford University Press; Sinauer Associates Inc, Sunderland, MA, 2004

[26] D. M. Williams, M. C. Ebach, Q. D. Wheeler, “Beyond Belief: The Steady Resurrection of Phenetics”, Beyond Cladistics: The Branching of a Paradigm, eds. Williams D. M., S. Knapp, University of California Press, Berkeley, CA, 2010, 169–196

[27] R. Tokarz, S. Sameroff, R. A. Hesse, B. M. Hause, A. Desai, K. Jain, W. Ian Lipkin, “Discovery of a novel nidovirus in cattle with respiratory disease”, J. Gen. Virol, 96:8 (2015), 2188–2193 | DOI

[28] A. C.P. Wong, X. Li, S. K.P. Lau, P. C.Y. Woo, “Global epidemiology of bat coronaviruses”, Viruses, 11:2 (2019) | DOI

[29] L. Pipes, H. Wang, J. P. Huelsenbeck, R. Nielsen, “Assessing uncertainty in the rooting of the SARS-CoV-2 phylogeny”, Mol. Biol. Evol, 38:4 (2021), 1537–1543 | DOI

[30] H. Zhou, X. Chen, T. Hu, J. Li, H. Song, Y. Liu, P. Wang, D. Liu, J. Yang, E. C. Holmes et al, “A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein”, Curr. Biol, 30:11 (2020), 2196–2203 | DOI

[31] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang et al, “A pneumonia outbreak associated with a new coronavirus of probable bat origin”, Nature, 579:7798 (2020), 270–273 | DOI

[32] P. Liu, J. Z. Jiang, X. F. Wan, Y. Hua, L. Li, J. Zhou, X. Wang, F. Hou, J. Chen, J. Zou, J. Chen, Are pangolins the intermediate host of the 2019 novel coronavirus, SARS-CoV-2?, PLoS Pathog, 16 (2020) | DOI

[33] Y. A. Helmy, M. Fawzy, A. Elaswad, A. Sobieh, S. P. Kenney, A. A. Shehata, “The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control”, J. Clin. Med, 9:4 (2020) | DOI

[34] R. Draker, R. L. Roper, M. Petric, R. Tellier, “The complete sequence of the bovine torovirus genome”, Virus Res, 115:1 (2006), 56–68 | DOI

[35] K. Katoh, K. Misawa, K. Kuma, T. Miyata, “MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform”, Nucleic Acids Res, 30:14 (2002), 3059–3066 | DOI

[36] K. Katoh, D. M. Standley, “MAFFT multiple sequence alignment software version 7: improvements in performance and usability”, Mol. Biol. Evol, 30:4 (2013), 772–780 | DOI

[37] M. A. Miller, W. Pfeiffer, T. Schwartz, “Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees”, Gateway Computing Environments Workshop (GCE 2010) (14 November 2010, New Orleans, Louisiana, USA), IEEE and Curran Associates Inc, San-Diego, CA, 2010 | DOI

[38] J. Castresana, “Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis”, Mol. Biol. Evol, 17:4 (2000), 540–552 | DOI

[39] M. Gouy, S. Guindon, O. Gascuel, “SeaView version 4, a multiplatform graphical user interface for sequence alignment and phylogenetic tree building”, Mol. Biol. Evol, 27:2 (2010), 221–224 | DOI

[40] S. R. Krishnamurthy, D. Wang, “Origins and challenges of viral dark matter”, Virus Res, 2017, no. 239, 136–142 | DOI

[41] F. J. Lapointe, G. Cucumel, “The average consensus procedure, combination of weighted trees containing identical or overlapping sets of taxa”, Syst. Biol, 46:2 (1997), 306–312 | DOI

[42] F. J. Lapointe, C. Levasseur, “Everything You Always Wanted to Know About the Average Consensus, and More”, Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, ed. Bininda-Emonds O.R.P., Springer Kluwer Academic Publisher, Dordrecht–Boston–London, 2004, 87–105

[43] W. P. Maddison, Maddison D. R. Mesquite, Mesquite project, a Modular System for Evolutionary Analysis. Version 3.70, Mesquite project, , 2021 (accessed 07.11.2022) http://www.mesquiteproject.org

[44] Swofford D. L. PAUP*, Phylogenetic Analysis using Parsimony* and Other Methods, Sinauer Associates, Sunderland, MA, 2002

[45] A. Rambaut, Drummond A. J., FigTree. Version 1.4.4, , Institute of Evolutionary Biology, University of Edinburgh, 2018 (accessed 07.11.2022) http://tree.bio.ed.ac.uk/software/figtree/

[46] V. Rineau, R. Zaragueta, J. Bardin, “Information content of trees, three-taxon statements, inference rules and dependency”, Biol. J. Linn. Soc, 133:4 (2021), 1152–1170 | DOI

[47] E. V. Mavrodiev, A. Madorsky, “TAXODIUM Version 1.0: a simple way to generate uniform and fractionally weighted three-item matrices from various kinds of biological data”, PLoS ONE, 7:11 (2012) | DOI

[48] D. M. Williams, D. J. Siebert, “Characters Homology and, Three-Item Statement Analysis”, Homology and Systematics, Coding Characters for Phylogenetic Analysis, eds. Eds. Scotl, R. W., R. T. Pennington, Chapman Hall, London–New York, 2000, 183–208

[49] C. J. Creevey, Clann: Investigating Phylogenetic Information Through Supertree Analyses. Version 3.0., The Lab. of James McInerney, Manchester, UK, 2004 (accessed 07.11.2022) http://chriscreevey.github.io/clann/

[50] C. J. Creevey, J. O. McInerney, “Trees From Trees: Construction of Phylogenetic Supertrees Using Clann”, Bioinformatics for DNA Sequence Analysis, ed. Posada D., Springer Humana Press, New York, 2009, 139–161

[51] X. Zhou, X. X. Shen, C. T. Hittinger, A. Rokas, “Evaluating fast maximum likelihood-based phylogenetic programs using empirical phylogenomic data sets”, Mol. Biol. Evol, 35:2 (2018), 486–503 | DOI

[52] J. Trifinopoulos, L. T. Nguyen, A. von Haeseler, B. Q. Minh, “W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis”, Nucleic Acids Res., 44:W1 (2016), 232–235 | DOI

[53] M. Anisimova, O. Gascuel, “Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative”, Syst. Biol, 55:4 (2006), 539–552 | DOI

[54] F. Ferron, H. J. Debat, A. Shannon, E. Decroly, B. Canard, “A N7-guanine RNA cap methyltransferase signature-sequence as a genetic marker of large genome, non-mammalian Tobaniviridae”, NAR Genom. Bioinform, 2:1 (2020) | DOI

[55] J. D. Sachs, S. S.A. Karim, L. Aknin, J. Allen, K. Brosbol, F. Colombo, G. C. Barron, M. F. Espinosa, V. Gaspar, A. Gaviria et al, “Commission on lessons for the future from the COVID-19 pandemic”, The Lancet, 400:10359 (2022), 1224–1280 | DOI

[56] E. C. Holmes, S. A. Goldstein, A. L. Rasmussen, D. L. Robertson, A. Crits-Christoph, J. O. Wertheim, S. J. Anthony, W. S. Barclay, M. F. Boni, P. C. Doherty et al, “The origins of SARS-CoV-2: A critical review”, Cell, 184:19 (2021), 4848–4856 | DOI

[57] R. F. Garry, “SARS-CoV-2 furin cleavage site was not engineered”, PNAS, 119:40 (2022) | DOI

[58] S. L. Liu, L. J. Saif, S. R. Weiss, L. Su, “No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2”, Emerg. Microbes Infect, 9:1 (2020), 505–507 | DOI

[59] J. L. Domingo, “An updated review of the scientific literature on the origin of SARS-CoV-2”, Environ. Res, 215 (2022), 114–131 | DOI

[60] S. M. Chaw, J. H. Tai, S. L. Chen, C. H. Hsieh, S. Y. Chang, S. H. Yeh, W. S. Yang, P. J. Chen, H. Y. Wang, “The origin and underlying driving forces of the SARS-CoV-2 outbreak”, J. Biomed. Sci, 27:1 (2020) | DOI

[61] C. Conceicao, N. Thakur, S. Human, J. T. Kelly, L. Logan, D. Bialy, S. Bhat, P. Stevenson-Leggett, A. K. Zagrajek, P. Hollinghurst et al, “The SARS-CoV-2 spike protein has a broad tropism for mammalian ACE2 proteins”, PLoS Biol, 18:12 (2020) | DOI

[62] L. Enjuanes, S. Zuniga, C. Castano-Rodriguez, J. Gutierrez-Alvarez, J. Canton, I. Sola, “Molecular basis of coronavirus virulence and vaccine development”, Adv. Virus Res, 96:8 (2016), 245–286 | DOI

[63] A. R. Fehr, S. Perlman, “Coronaviruses: An Overview of Their Replication and Pathogenesis”, Coronaviruses, Methods in Molecular Biology, 1282, eds. Maier H., E. Bickerton, P. Britton, Humana Press, New York, 2015, 1–26 | DOI

[64] B. C. Fielding, “Editorial: Human coronavirus research: 20 years since the SARS-CoV outbreak”, Front. Microbiol, 13 (2022), 1035267 | DOI

[65] D. X. Liu, J. Q. Liang, T. S. Fung, “Human Coronavirus-229E,OC43, -NL63, and -HKU1 (Coronaviridae)”, Encyclopedia of Virology, 2 (2021), 428–440 | DOI

[66] van der Hoek L., Human coronaviruses, what do they cause?, Antivir. Ther., 12 (2007), 651–658

[67] P. C. Woo, S. K. Lau, C. M. Chu, K. H. Chan, H. W. Tsoi, Y. Huang, B. H. Wong, R. W. Poon, J. J. Cai, W. K. Luk et al, “Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia”, J. Virol, 79:2 (2005), 884–895 | DOI

[68] A. S. Abdel-Moneim, E. M. Abdelwhab, “Evidence for SARS-CoV-2 infection of animal hosts”, Pathogens, 9:7 (2020), 529 | DOI

[69] H. Murphy, H. Ly, What are the risk levels of humans contracting SARS-CoV-2 from pets and vice versa?, J. Med. Virol, 94:11 (2022), 5613–5614 | DOI

[70] A. E. Gorbalenya, S. G. Siddell, “Recognizing species as a new focus of virus research”, PLoS Pathog, 17:3 (2021) | DOI

[71] G. A. Rossi, O. Sacco, E. Mancino, L. Cristiani, F. Midulla, “Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases”, Infection, 48:5 (2020), 665–669 | DOI

[72] J. Hadfield, C. Megill, S. M. Bell, J. Huddleston, B. Potter, C. Callender, P. Sagulenko, T. Bedford, R. A. Neher, “Nextstrain: real-time tracking of pathogen evolution”, Bioinformatics, 34:23 (2018), 4121–4123 | DOI

[73] M. B. Chaley, V. A. Kutyrkin, “Coronavirus genus recognition based on prototype virus variants”, Math. Biol. Bioinf, 17:1 (2022), 10–27 | DOI

[74] Van Regenmortel M. H.V., “Classes, taxa and categories in hierarchical virus classification: a review of current debates on definitions and names of virus species”, Bionomina, 10:1 (2016), 1–21 | DOI