Development of a deep learning generative neural network for computer-aided design of potential SARS-Cov-2 inhibitors
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 188-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two generative deep learning models have been developed for the computer-aided design of potential inhibitors of the SARS-CoV-2 main protease (M$^{\mathrm{Pro}}$), an enzyme critically important for the virus replication and transcription, and, therefore, presenting a promising target for the design of effective antiviral drugs. To solve this problem, we formed a training library of small molecules containing structural elements capable of providing specific and effective interactions of potential ligands with the SARS-CoV-2 M$^{\mathrm{Pro}}$ catalytic site. The architecture of generative models was developed and implemented to generate new high-affinity ligands of this functionally important SARS-CoV-2 protein. The neural network was trained and tested on the compounds from the training library, and the results of training and operation in two different generation modes were evaluated. The use of generative models in conjunction with the molecular docking demonstrated their great potential for filling the unexplored regions of the chemical space with novel molecules with pre-defined properties, which is confirmed by the obtained results according to which out of 4805 compounds generated by the neural network only one compound was present in the original data set.
@article{MBB_2022_17_2_a3,
     author = {N. A. Shuldau and A. M. Yushkevich and K. V. Furs and A. V. Tuzikov and A. M. Andrianov},
     title = {Development of a deep learning generative neural network for computer-aided design of potential {SARS-Cov-2} inhibitors},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {188--207},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a3/}
}
TY  - JOUR
AU  - N. A. Shuldau
AU  - A. M. Yushkevich
AU  - K. V. Furs
AU  - A. V. Tuzikov
AU  - A. M. Andrianov
TI  - Development of a deep learning generative neural network for computer-aided design of potential SARS-Cov-2 inhibitors
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 188
EP  - 207
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a3/
LA  - ru
ID  - MBB_2022_17_2_a3
ER  - 
%0 Journal Article
%A N. A. Shuldau
%A A. M. Yushkevich
%A K. V. Furs
%A A. V. Tuzikov
%A A. M. Andrianov
%T Development of a deep learning generative neural network for computer-aided design of potential SARS-Cov-2 inhibitors
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 188-207
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a3/
%G ru
%F MBB_2022_17_2_a3
N. A. Shuldau; A. M. Yushkevich; K. V. Furs; A. V. Tuzikov; A. M. Andrianov. Development of a deep learning generative neural network for computer-aided design of potential SARS-Cov-2 inhibitors. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 188-207. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a3/

[1] T. Katsila, G. A. Spyroulias, G. P. Patrinos, M. T. Matsoukas, “Computational approaches in target identification and drug discovery”, Comput. Struct. Biotechnol. J., 14 (2016), 177–184 | DOI

[2] V. R. Knight-Schrijver, V. Chelliah, L. Cucurull-Sanchez, N. Le Novere, “The promises of quantitative systems pharmacology modelling for drug development”, Comput. Struct. Biotechnol. J., 4 (2016), 363–370 | DOI

[3] J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, B. Li, A. Madabhushi, P. Shah, M. Spitzer, S. Zhao, “Applications of machine learning in drug discovery and development”, Nat. Rev. Drug Discov., 18:6 (2019), 463–477 | DOI

[4] C. F. Lipinski, V. G. Maltarollo, P. R. Oliveira, A. B.F. da Silva, K. M. Honorio, “Advances and perspectives in applying deep learning for drug design and discovery”, Front. Robotics and AI, 6 (2019), 108 | DOI

[5] D. A. Dobchev, G. G. Pillai, M. Karelson, “In silico machine learning methods in drug development”, Curr. Top. Med. Chem., 14:16 (2014), 1913–1922 | DOI

[6] A. Cherkasov, E. N. Muratov, D. Fourches, A. Varnek, Baskin II, Cronin M, J. Dearden, P. Gramatica, Y. C. Martin, R. Todeschini, V. Consonni, V. E. Kuz'min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, A. Tropsha, QSAR modeling: where have you been? Where are you going to?, J. Med. Chem., 57:12 (2014), 4977–5010 | DOI

[7] S. L. Kinnings, N. Liu, P. J. Tonge, R. M. Jackson, L. Xie, P. E. Bourne, “A Machine learning-based method to improve docking scoring functions and its application to drug repurposing”, J. Chem. Inf. Model, 51:2 (2011), 408–419 | DOI

[8] Agastheeswaramoorthy K., Sevilimedu A., Drug REpurposing using AI/ML tools for Rare Diseases (DREAM-RD): A case study with Fragile X Syndrome (FXS), bioRxiv, 2020 | DOI

[9] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Z?dek, A. W.R. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu, D. Hassabis, “Improved protein structure prediction using potentials from deep learning”, Nature, 577 (2020), 706–710 | DOI

[10] H. Li, K. H. Sze, G. Lu, P. J. Ballester, “Machine-learning scoring functions for structure-based virtual screening”, WIREs Comput. Mol. Sci, 11 (2020) | DOI

[11] G. L. Xiong, W. L. Ye, C. Shen, A. P. Lu, T. J. Hou, D. S. Cao, “Improving structure-based virtual screening performance via learning from scoring function components”, Brief. Bioinform, 22 (2020) | DOI

[12] J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M. Donghia, C. R. MacNair, S. French, L. A. Carfrae, Z. Bloom-Ackermann, V. M. Tran, A. Chiappino-Pepe, A. H. Badran, I. W. Andrews, E. J. Chory, J. M. Church, E. D. Brown, T. S. Jaakkola, R. Barzilay, J. J. Collins, “A deep learning approach to antibiotic discovery”, Cell, 180:4 (2020), 688–702 | DOI

[13] P. B. Timmons, C. M. Hewage, “ENNAVIA is a novel method which employs neural networks for antiviral and anti-coronavirus activity prediction for therapeutic peptides”, Brief. Bioinform, 22 (2021) | DOI

[14] A. M. Andrianov, G. I. Nikolaev, N. A. Shuldov, I. P. Bosko, A. I. Anischenko, A. V. Tuzikov, “Application of deep learning and molecular modeling to identify small drug-like compounds as potential HIV-1 entry inhibitors”, J. Biomol. Struct. Dyn, 15 (2021), 1–19 | DOI

[15] Y. Zhang, T. Ye, H. Xi, M. Juhas, J. Li, “Deep learning driven drug discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2”, Front. Microbiol, 2021 | DOI

[16] R. Mercado, T. Rastemo, E. Lindelof, G. Klambauer, O. Engkvist, H. Chen, E. J. Bjerrum, Practical notes on building molecular graph generative models, ChemRxiv. Preprint, 2020 | DOI

[17] J. Arus-Pous, T. Blaschke, S. Ulander, J. L. Reymond, H. Chen, O. Engkvist, “Exploring the GDB-13 chemical space using deep generative models”, J. Cheminform, 11 (2019) | DOI

[18] O. Prykhodko, S. V. Johansson, P. C. Kotsias, J. Arus-Pous, E. J. Bjerrum, O. Engkvist, H. Chen, “A de novo molecular generation method using latent vector based generative adversarial network”, J. Cheminform, 11:1 (2019) | DOI

[19] D. Polykovskiy, A. Zhebrak, D. Vetrov, Y. Ivanenkov, V. Aladinskiy, P. Mamoshina, M. Bozdaganyan, A. Aliper, A. Zhavoronkov, A. Kadurin, “Entangled conditional adversarial autoencoder for de novo drug discovery”, Mol. Pharmaceutics, 15:10 (2018), 4398–4405 | DOI

[20] J. Zhang, R. Mercado, O. Engkvist, H. Chen, Comparative study of deep generative models on chemical space coverage, ChemRxiv. Preprint, 2020 | DOI

[21] A. Zhavoronkov, Y. A. Ivanenkov, A. Aliper, M. S. Veselov, V. A. Aladinskiy, A. V. Aladinskaya, V. A. Terentiev, D. A. Polykovskiy, M. D. Kuznetsov, A. Asadulaev, Yu. Volkov, A. Zholus, R. R. Shayakhmetov, A. Zhebrak, L. I. Minaeva, B. A. Zagribelnyy, L. H. Lee, R. Soll, D. Madge, L. Xing, T. Guo, A. Aspuru-Guzik, “Deep learning enables rapid identification of potent DDR1 kinase inhibitors”, Nat. Biotechnol, 37:9 (2019), 1038–1040 | DOI

[22] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E. Bolton, “PubChem in 2021: new data content and improved web interfaces”, Nucl. Acids Res., 49:D1 (2021), D1388–D1395 | DOI

[23] Weininger D., “SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules”, J. Chem. Inf. Comput. Sci., 28:1 (1998), 31–36 | DOI

[24] T. Pillaiyar, M. Manickam, V. Namasivayam, Y. Hayashi, S. H. Jung, “An overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy”, J. Med.Chem, 59:14 (2016), 6595–6628 | DOI

[25] F. Yan, F. Gao, “An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2”, Comp. Struct. Biotechnol. J., 19 (2021), 4868–4883 | DOI

[26] S. Ullrich, C. Nitsche, “The SARS-CoV-2 main protease as drug target”, Bioorganic Med. Chem. Lett, 30:17 (2020) | DOI

[27] P. Forster, L. Forster, C. Renfrew, M. Forster, “Phylogenetic network analysis of SARS-CoV-2 genomes”, Proc. Natl. Acad. Ssci. USA, 117:17 (2020), 9241–9243 | DOI

[28] D. Schneidman-Duhovny, O. Dror, Y. Inbar, R. Nussinov, H. J. Wolfson, “Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules”, J. Comput. Biol, 15:7 (2008), 737–754 | DOI

[29] J. Sunseri, D. R. Koes, “Pharmit: interactive exploration of chemical space”, Nucl. Acids Res., 44 (2016), W442-W448 | DOI

[30] D. A. Filimonov, D. S. Druzhilovskii, A. A. Lagunin, T. A. Gloriozova, A. V. Rudik, A. V. Dmitriev, P. V. Pogodin, V. V. Poroikov, “Kompyuternoe prognozirovanie spektrov biologicheskoi aktivnosti khimicheskikh soedinenii: vozmozhnosti i ogranicheniya”, Biomed Chem.: Research and Methods, 1 (2018) | DOI

[31] A. Alhossary, S. D. Handoko, Y. Mu, Kwoh C. K., “Fast, accurate, and reliable molecular docking with QuickVina 2”, Bioinformatics, 31:13 (2015), 2214–2216 | DOI

[32] S. Wang, J. Witek, G. A. Landrum, S. Riniker, “Improving conformer generation for small rings and macrocycles based on distance geometry and experimental torsional-angle preferences”, J. Chem. Inf. Model, 60 (2020), 2044–2058 | DOI

[33] J. Gasteiger, M. Marsili, “A new model for calculating atomic charges in molecules”, Tetrahedron Lett, 19 (1978), 3181–3184 | DOI

[34] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, Skiff W. M., “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”, J. Am. Chem. Soc, 114 (1992), 10024–10035 | DOI

[35] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, “Open Babel: An open chemical toolbox”, J. Cheminformatics, 3 (2011) | DOI

[36] T. A. Halgren, “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94”, J. Comput. Chem, 17 (1996), 490–519 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[37] P. Tosco, N. Stiefl, G. Landrum, “Bringing the MMFF force field to the RDKit: implementation and validation”, J. Cheminformatics, 6 (2014) | DOI

[38] O. Trott, A. J. Olson, “AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, J. Comput. Chem, 31 (2010), 455–461 | DOI

[39] B. Epstein, R. Meir, Generalization bounds for unsupervised and semi-supervised learning with autoencoders, 2019, arXiv: 1902.01449 | DOI

[40] S. Hochreiter, J. Schmidhuber, “Long Short-Term Memory”, Neural Comput, 9 (1997), 1735–1780 | DOI

[41] A. F. Agarap, Deep Learning using Rectified Linear Units (ReLU), 2019, arXiv: 1803.08375 | DOI

[42] Sharma Sid, Sharma Sim, A. Athaiya, “Activation functions in neural networks”, IJEAST, 4:12 (2020), 310–316

[43] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv: 1412.6980 | DOI

[44] K. Janocha, W. M. Czarnecki, “On loss functions for deep neural networks in classification”, Schedae Informaticae, 25 (2016), 49–59 | DOI

[45] R. Shu, S. Zhao, M. J. Kochenderfer, “Rethinking style and content disentanglement in variational autoencoders”, Workshop Track Proceedings, 6th International Conference on Learning Representations, ICLR 2018 (Vancouver, BC, Canada, April 30–May 3, 2018), 2018 (data obrascheniya: 08.09.2022) https://openreview.net/pdf?id=B1rQtwJDG