Additional pathogenic pathways in RBCK1 deficiency
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 174-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

RBCK1 deficiency is a rare congenital autoinflammatory disease that causes inflammatory disruption on the molecular level. This deficiency has three major clinical manifestations: increased sensitivity to bacterial infections, autoinflammation syndrome, and the accumulation of amylopectin in skeletal muscle. The amylopectinosis causes myopathy and cardiomyopathy. The pathogenesis of the disease is poorly investigated and may include unnoticed relationships. We performed gene expression analysis on patients with RBCK1 deficiency and three other autoinflammatory diseases. The identification of differentially expressed genes revealed a large number of downregulated genes that are involved in the activation of essential metabolic and immune pathways, including NF-kB and Pi3k-Akt-mTOR. Signaling pathways were analysed using the KEGG (Kyoto Encyclopedia of Genes and Genomes) and Gene Ontology resource. Predicted protein-protein interactions were retrieved from the STRING (Search Tool for the Retrieval of Interacting proteins database). Besides the primary involvement of RBCK1 in disease pathology, several downregulated pathways aggravate symptoms of myopathy, cardiomyopathy, and bacterial disease. The studied pathways may serve as new targets for the development of compensatory therapies for patients with RBCK1 deficiency.
@article{MBB_2022_17_2_a2,
     author = {E. I. Demicheva and Kh. Shinwari and K. S. Ushenin and M. A. Bolkov},
     title = {Additional pathogenic pathways in {RBCK1} deficiency},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {174--187},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a2/}
}
TY  - JOUR
AU  - E. I. Demicheva
AU  - Kh. Shinwari
AU  - K. S. Ushenin
AU  - M. A. Bolkov
TI  - Additional pathogenic pathways in RBCK1 deficiency
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 174
EP  - 187
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a2/
LA  - en
ID  - MBB_2022_17_2_a2
ER  - 
%0 Journal Article
%A E. I. Demicheva
%A Kh. Shinwari
%A K. S. Ushenin
%A M. A. Bolkov
%T Additional pathogenic pathways in RBCK1 deficiency
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 174-187
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a2/
%G en
%F MBB_2022_17_2_a2
E. I. Demicheva; Kh. Shinwari; K. S. Ushenin; M. A. Bolkov. Additional pathogenic pathways in RBCK1 deficiency. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 174-187. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a2/

[1] A. A. de Jesus, R. Goldbach-Mansky, “Genetically defined autoinflammatory diseases”, Oral Diseases, 22:7 (2016), 591–604 | DOI

[2] F. McDermott, I. Aksentijevich, J. Galon, E. M. McDermott, B. W. Ogunkolade, M. Centola, E. Mansfield, M. Gadina, L. Karenko, T. Pettersson et al, “Germline mutations in the extracellular domains of the 55 kda tnf receptor, tnfr1, define a family of dominantly inherited autoinflammatory syndromes”, Cell, 97:1 (1999), 133–144 | DOI

[3] I. Touitou, S. Lesage, M. McDermott, L. Cuisset, H. Hoffman, C. Dode, N. Shoham, E. Aganna, J. P. Hugot, C. Wise et al, “Infevers: an evolving mutation database for autoinflammatory syndromes”, Hum. Mutat, 24:3 (2004), 194–198 | DOI

[4] S. F. Perazzio, E. J. Allenspach, K. K. Eklund, M. Varjosalo, M. M. Shinohara, T. R. Torgerson, M. R.J. Seppanen, “Behcet disease (bd) and bd-like clinical phenotypes: Nf-b pathway in mucosal ulcerating diseases”, Scand. J. Immunol, 92:5 (2020), e12973 | DOI

[5] I. Kelsall, E. H. McCrory, Y. Xu, C. Scudamore, S. K. Nanda, P. Mancebo-Gamella, N. T. Wood, A. Knebel, S. J. Matthews, P. Cohen, Hoil-1-catalysed ubiquitylation of unbranched glucosaccharides and its activation by ubiquitinoligomers, preprint of bioRxiv, 2021 | DOI

[6] M. Bolstad, R. A. Irizarry, M. Astrand, T. P. Speed, “A comparison of normalization methods for high density oligonucleotide array data based on variance and bias”, Bioinformatics, 19:2 (2003), 185–193 | DOI

[7] B. Efron, R. Tibshirani, J. D. Storey, V. Tusher, “Empirical bayes analysis of a microarray experiment”, Journal of the American Statistical Association, 96:456 (2001), 1151–1160 | DOI

[8] P. Russo, G. R. Ferreira, L. E. Cardozo, M. C. Burger, R. Arias-Carrasco, S. R. Maruyama, T. D.C. Hirata, D. S. Lima, F. M. Passos, K. F. Fukutani, M. Lever, J. S. Silva, V. Maracaja-Coutinho, H. I. Nakaya, “Cemitool: a bioconductor package for performing comprehensive modular co-expression analyses”, BMC Bioinformatics, 19:1 (2018) | DOI

[9] P. Khatri, M. Sirota, A. J. Butte, “Ten years of pathway analysis: current approaches and outstanding challenges”, PLoS Comput. Biol, 8:2 (2012), e1002375 | DOI

[10] S. Falcon, R. Gentleman, “Hypergeometric Testing Used for Gene Set Enrichment Analysis”, Bioconductor Case Studies. Use R!, Springer, New York, 2008, 207–220 | DOI

[11] M. Kanehisa, S. Goto, “Kegg: kyoto encyclopedia of genes and genomes”, Nucleic Acids Research, 28:1 (2000), 27–30 | DOI

[12] “The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong”, Nucleic Acids Research, 47:D330-D338 (2019) | DOI

[13] M. Martens, A. Ammar, A. Riutta, A. Waagmeester, D. N. Slenter, K. Hanspers, R. A. Miller, D. Digles, E. N. Lopes, F. Ehrhart et al, “WikiPathways: connecting communities”, Nucleic Acids Research, 49:D1 (2021), D613-D621 | DOI

[14] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork et al, “STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets”, Nucleic Acids Research, 47:D1 (2018), D607-D613 | DOI

[15] H. Zar, “Spearman rank correlation”, Encyclopedia of Biostatistics, 2005 | DOI

[16] S. Davis, P. S. Meltzer, “Geoquery: a bridge between the gene expression omnibus (geo) and bioconductor”, Bioinformatics, 23:14 (2007), 1846 | DOI

[17] M. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, “limma powers differential expression analyses for rna-sequencing and microarray studies”, Nucleic Acids Research, 43:7 (2015), e47 | DOI

[18] G. Yu, L. G. Wang, Y. Han, Q. Y. He, “clusterProfiler: an r package for comparing biological themes among gene clusters”, OMICSMay, 16:5 (2012), 284–287 | DOI

[19] T. Liu, L. Zhang, D. Joo, Sun, “Nf-b signaling in inflammation”, Sig. Transduct. Target. Ther, 2 (2017), 17023 | DOI

[20] K. Iwai, “Lubac-mediated linear ubiquitination: a crucial regulator of immune signaling”, Proceedings of the Japan Academy Series B, Physical and biological sciences, 97:3 (2021), 120–133 | DOI

[21] C. Thomsen, E. Malfatti, A. Jovanovic, M. Roberts, O. Kalev, C. Lindberg, A. Oldfors, “Proteomic characterization of polyglucosan bodies in skeletal muscle in rbck1 deficiency”, Neuropathology and Applied Neurobiology, 10 (2021) | DOI

[22] J. Nilsson, B. Schoser, P. Laforet, O. Kalev, C. Lindberg, N. B. Romero, M. D. Lopez, H. O. Akman, K. Wahbi, S. Iglseder et al, “Polyglucosan body myopathy caused by defective ubiquitin ligase rbck1”, Ann. Neurol, 74:6 (2013), 914–919 | DOI

[23] X. Li, T. Wan, Y. Li, “Role of foxo1 in regulating autophagy in type 2 diabetes mellitus (review)”, Experimental and Therapeutic Medicine, 22:707 (2021) | DOI

[24] N. Porciello, M. Kunkl, A. Viola, L. Tuosto, “Phosphatidylinositol 4-phosphate 5-kinases in the regulation of t cell activation”, Frontiers in Immunology, 7 (2016), 186 | DOI

[25] R. Z. Yang, M. J. Lee, H. Hu, J. Pray, H. B. Wu, B. C. Hansen, A. R. Shuldiner, S. K. Fried, J. C. McLenithan, D. W. Gong et al, “Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action”, Am. J. Physiol. Endocrinol. Metab, 290:6 (2006), E1253-E1261 | DOI

[26] H. Zhao, M. Tang, M. Liu, L. Chen, “Glycophagy: An emerging target in pathology”, Clin. Chim. Acta, 484 (2018), 298–303 | DOI

[27] Y. Zhu, N. Kakinuma, Y. Wang, R. Kiyama, “Kank proteins a new family of ankyrin-repeat domain-containing proteins”, Biochim. Biophys. Acta, 1780:2 (2008), 128–133 | DOI

[28] H. Y. Gee, F. Zhang, S. Ashraf, S. Kohl, C. E. Sadowski, V. Vega-Warner, W. Zhou, S. Lovric, H. Fang, M. Nettleton et al, “KANK deficiency leads to podocyte dysfunction and nephrotic syndrome”, J. Clin. Invest, 125:6 (2015), 2375–2384 | DOI

[29] D. Thumkeo, S. Watanabe, S. Narumiya, “Physiological roles of rho and rho effectors in mammals”, Eur. J. Cell Biol, 92:10-11 (2013), 303–315 | DOI

[30] Y. Dai, W. Luo, J. Chang, “Rho kinase signaling and cardiac physiology”, Curr. Opin. Physiol, 1 (2018), 14–20 | DOI

[31] A. Bayot, S. Reichman, S. Lebon, Z. Csaba, L. Aubry, G. Sterkers, I. Husson, M. Rak, P. Rustin, “Cis-silencing of PIP5K1B evidenced in friedreich's ataxia patient cells results in cytoskeleton anomalies”, Hum. Mol. Genet, 22:14 (2013), 2894–2904 | DOI

[32] E. Hanson, M. Sheldon, B. Pacheco, M. Alkubeysi, V. Raizada, “Heart disease in friedreich's ataxia”, World J. Cardiol, 11:1 (2019), 1–12 | DOI

[33] N. Huynh, Q. Ou, P. Cox, R. Lill, K. King-Jones, “Glycogen branching enzyme controls cellular iron homeostasis via iron regulatory protein 1 and mitoneet”, Nature Communications, 10:1 (2019), 5463 | DOI

[34] K. Yamanaka, H. Ishikawa, Y. Megumi, F. Tokunaga, M. Kanie, T. A. Rouault, I. Morishima, N. Minato, K. Ishimori, K. Iwai, “Identification of the ubiquitin-protein ligase that recognizes oxidized irp2”, Nat. Cell Biol, 5:4 (2003), 336–340 | DOI

[35] M. Zhang, Y. Tian, R. Wang, D. Gao, Y. Zhang, F. C. Diao, D. Y. Chen, Z. H. Zhai, H. B. Shu, “Negative feedback regulation of cellular antiviral signaling by rbck1-mediated degradation of irf3”, Cell Research, 10:1038 (2008), 1096–1104 | DOI

[36] M. C.S. Menezes, A. D.M. Veiga, T. M. de Lima, S. K.K. Ariga, H. V. Barbeiro, C. de Lucena Moreira, A. A.S. Pinto, R. A. Brandao, J. F. Marchini, J. C. Alencar et al, “Lower peripheral blood toll-like receptor 3 expression is associated with an unfavorable outcome in severe covid-19 patients”, Sci. Rep, 11 (2021), 15223 | DOI