Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_2_a2, author = {E. I. Demicheva and Kh. Shinwari and K. S. Ushenin and M. A. Bolkov}, title = {Additional pathogenic pathways in {RBCK1} deficiency}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {174--187}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a2/} }
TY - JOUR AU - E. I. Demicheva AU - Kh. Shinwari AU - K. S. Ushenin AU - M. A. Bolkov TI - Additional pathogenic pathways in RBCK1 deficiency JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - 174 EP - 187 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a2/ LA - en ID - MBB_2022_17_2_a2 ER -
%0 Journal Article %A E. I. Demicheva %A Kh. Shinwari %A K. S. Ushenin %A M. A. Bolkov %T Additional pathogenic pathways in RBCK1 deficiency %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P 174-187 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a2/ %G en %F MBB_2022_17_2_a2
E. I. Demicheva; Kh. Shinwari; K. S. Ushenin; M. A. Bolkov. Additional pathogenic pathways in RBCK1 deficiency. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 174-187. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a2/
[1] A. A. de Jesus, R. Goldbach-Mansky, “Genetically defined autoinflammatory diseases”, Oral Diseases, 22:7 (2016), 591–604 | DOI
[2] F. McDermott, I. Aksentijevich, J. Galon, E. M. McDermott, B. W. Ogunkolade, M. Centola, E. Mansfield, M. Gadina, L. Karenko, T. Pettersson et al, “Germline mutations in the extracellular domains of the 55 kda tnf receptor, tnfr1, define a family of dominantly inherited autoinflammatory syndromes”, Cell, 97:1 (1999), 133–144 | DOI
[3] I. Touitou, S. Lesage, M. McDermott, L. Cuisset, H. Hoffman, C. Dode, N. Shoham, E. Aganna, J. P. Hugot, C. Wise et al, “Infevers: an evolving mutation database for autoinflammatory syndromes”, Hum. Mutat, 24:3 (2004), 194–198 | DOI
[4] S. F. Perazzio, E. J. Allenspach, K. K. Eklund, M. Varjosalo, M. M. Shinohara, T. R. Torgerson, M. R.J. Seppanen, “Behcet disease (bd) and bd-like clinical phenotypes: Nf-b pathway in mucosal ulcerating diseases”, Scand. J. Immunol, 92:5 (2020), e12973 | DOI
[5] I. Kelsall, E. H. McCrory, Y. Xu, C. Scudamore, S. K. Nanda, P. Mancebo-Gamella, N. T. Wood, A. Knebel, S. J. Matthews, P. Cohen, Hoil-1-catalysed ubiquitylation of unbranched glucosaccharides and its activation by ubiquitinoligomers, preprint of bioRxiv, 2021 | DOI
[6] M. Bolstad, R. A. Irizarry, M. Astrand, T. P. Speed, “A comparison of normalization methods for high density oligonucleotide array data based on variance and bias”, Bioinformatics, 19:2 (2003), 185–193 | DOI
[7] B. Efron, R. Tibshirani, J. D. Storey, V. Tusher, “Empirical bayes analysis of a microarray experiment”, Journal of the American Statistical Association, 96:456 (2001), 1151–1160 | DOI
[8] P. Russo, G. R. Ferreira, L. E. Cardozo, M. C. Burger, R. Arias-Carrasco, S. R. Maruyama, T. D.C. Hirata, D. S. Lima, F. M. Passos, K. F. Fukutani, M. Lever, J. S. Silva, V. Maracaja-Coutinho, H. I. Nakaya, “Cemitool: a bioconductor package for performing comprehensive modular co-expression analyses”, BMC Bioinformatics, 19:1 (2018) | DOI
[9] P. Khatri, M. Sirota, A. J. Butte, “Ten years of pathway analysis: current approaches and outstanding challenges”, PLoS Comput. Biol, 8:2 (2012), e1002375 | DOI
[10] S. Falcon, R. Gentleman, “Hypergeometric Testing Used for Gene Set Enrichment Analysis”, Bioconductor Case Studies. Use R!, Springer, New York, 2008, 207–220 | DOI
[11] M. Kanehisa, S. Goto, “Kegg: kyoto encyclopedia of genes and genomes”, Nucleic Acids Research, 28:1 (2000), 27–30 | DOI
[12] “The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong”, Nucleic Acids Research, 47:D330-D338 (2019) | DOI
[13] M. Martens, A. Ammar, A. Riutta, A. Waagmeester, D. N. Slenter, K. Hanspers, R. A. Miller, D. Digles, E. N. Lopes, F. Ehrhart et al, “WikiPathways: connecting communities”, Nucleic Acids Research, 49:D1 (2021), D613-D621 | DOI
[14] D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork et al, “STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets”, Nucleic Acids Research, 47:D1 (2018), D607-D613 | DOI
[15] H. Zar, “Spearman rank correlation”, Encyclopedia of Biostatistics, 2005 | DOI
[16] S. Davis, P. S. Meltzer, “Geoquery: a bridge between the gene expression omnibus (geo) and bioconductor”, Bioinformatics, 23:14 (2007), 1846 | DOI
[17] M. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, “limma powers differential expression analyses for rna-sequencing and microarray studies”, Nucleic Acids Research, 43:7 (2015), e47 | DOI
[18] G. Yu, L. G. Wang, Y. Han, Q. Y. He, “clusterProfiler: an r package for comparing biological themes among gene clusters”, OMICSMay, 16:5 (2012), 284–287 | DOI
[19] T. Liu, L. Zhang, D. Joo, Sun, “Nf-b signaling in inflammation”, Sig. Transduct. Target. Ther, 2 (2017), 17023 | DOI
[20] K. Iwai, “Lubac-mediated linear ubiquitination: a crucial regulator of immune signaling”, Proceedings of the Japan Academy Series B, Physical and biological sciences, 97:3 (2021), 120–133 | DOI
[21] C. Thomsen, E. Malfatti, A. Jovanovic, M. Roberts, O. Kalev, C. Lindberg, A. Oldfors, “Proteomic characterization of polyglucosan bodies in skeletal muscle in rbck1 deficiency”, Neuropathology and Applied Neurobiology, 10 (2021) | DOI
[22] J. Nilsson, B. Schoser, P. Laforet, O. Kalev, C. Lindberg, N. B. Romero, M. D. Lopez, H. O. Akman, K. Wahbi, S. Iglseder et al, “Polyglucosan body myopathy caused by defective ubiquitin ligase rbck1”, Ann. Neurol, 74:6 (2013), 914–919 | DOI
[23] X. Li, T. Wan, Y. Li, “Role of foxo1 in regulating autophagy in type 2 diabetes mellitus (review)”, Experimental and Therapeutic Medicine, 22:707 (2021) | DOI
[24] N. Porciello, M. Kunkl, A. Viola, L. Tuosto, “Phosphatidylinositol 4-phosphate 5-kinases in the regulation of t cell activation”, Frontiers in Immunology, 7 (2016), 186 | DOI
[25] R. Z. Yang, M. J. Lee, H. Hu, J. Pray, H. B. Wu, B. C. Hansen, A. R. Shuldiner, S. K. Fried, J. C. McLenithan, D. W. Gong et al, “Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action”, Am. J. Physiol. Endocrinol. Metab, 290:6 (2006), E1253-E1261 | DOI
[26] H. Zhao, M. Tang, M. Liu, L. Chen, “Glycophagy: An emerging target in pathology”, Clin. Chim. Acta, 484 (2018), 298–303 | DOI
[27] Y. Zhu, N. Kakinuma, Y. Wang, R. Kiyama, “Kank proteins a new family of ankyrin-repeat domain-containing proteins”, Biochim. Biophys. Acta, 1780:2 (2008), 128–133 | DOI
[28] H. Y. Gee, F. Zhang, S. Ashraf, S. Kohl, C. E. Sadowski, V. Vega-Warner, W. Zhou, S. Lovric, H. Fang, M. Nettleton et al, “KANK deficiency leads to podocyte dysfunction and nephrotic syndrome”, J. Clin. Invest, 125:6 (2015), 2375–2384 | DOI
[29] D. Thumkeo, S. Watanabe, S. Narumiya, “Physiological roles of rho and rho effectors in mammals”, Eur. J. Cell Biol, 92:10-11 (2013), 303–315 | DOI
[30] Y. Dai, W. Luo, J. Chang, “Rho kinase signaling and cardiac physiology”, Curr. Opin. Physiol, 1 (2018), 14–20 | DOI
[31] A. Bayot, S. Reichman, S. Lebon, Z. Csaba, L. Aubry, G. Sterkers, I. Husson, M. Rak, P. Rustin, “Cis-silencing of PIP5K1B evidenced in friedreich's ataxia patient cells results in cytoskeleton anomalies”, Hum. Mol. Genet, 22:14 (2013), 2894–2904 | DOI
[32] E. Hanson, M. Sheldon, B. Pacheco, M. Alkubeysi, V. Raizada, “Heart disease in friedreich's ataxia”, World J. Cardiol, 11:1 (2019), 1–12 | DOI
[33] N. Huynh, Q. Ou, P. Cox, R. Lill, K. King-Jones, “Glycogen branching enzyme controls cellular iron homeostasis via iron regulatory protein 1 and mitoneet”, Nature Communications, 10:1 (2019), 5463 | DOI
[34] K. Yamanaka, H. Ishikawa, Y. Megumi, F. Tokunaga, M. Kanie, T. A. Rouault, I. Morishima, N. Minato, K. Ishimori, K. Iwai, “Identification of the ubiquitin-protein ligase that recognizes oxidized irp2”, Nat. Cell Biol, 5:4 (2003), 336–340 | DOI
[35] M. Zhang, Y. Tian, R. Wang, D. Gao, Y. Zhang, F. C. Diao, D. Y. Chen, Z. H. Zhai, H. B. Shu, “Negative feedback regulation of cellular antiviral signaling by rbck1-mediated degradation of irf3”, Cell Research, 10:1038 (2008), 1096–1104 | DOI
[36] M. C.S. Menezes, A. D.M. Veiga, T. M. de Lima, S. K.K. Ariga, H. V. Barbeiro, C. de Lucena Moreira, A. A.S. Pinto, R. A. Brandao, J. F. Marchini, J. C. Alencar et al, “Lower peripheral blood toll-like receptor 3 expression is associated with an unfavorable outcome in severe covid-19 patients”, Sci. Rep, 11 (2021), 15223 | DOI