Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_2_a17, author = {A. S. Shigaev and I. V. Likhachev and V. D. Lakhno}, title = {Problems of quantum-classical modeling of the primary photoreaction in rhodopsin}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {360--385}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a17/} }
TY - JOUR AU - A. S. Shigaev AU - I. V. Likhachev AU - V. D. Lakhno TI - Problems of quantum-classical modeling of the primary photoreaction in rhodopsin JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - 360 EP - 385 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a17/ LA - ru ID - MBB_2022_17_2_a17 ER -
%0 Journal Article %A A. S. Shigaev %A I. V. Likhachev %A V. D. Lakhno %T Problems of quantum-classical modeling of the primary photoreaction in rhodopsin %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P 360-385 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a17/ %G ru %F MBB_2022_17_2_a17
A. S. Shigaev; I. V. Likhachev; V. D. Lakhno. Problems of quantum-classical modeling of the primary photoreaction in rhodopsin. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 360-385. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a17/
[1] J. L. Spudich, C. S. Yang, K. H. Jung, E. N. Spudich, “Retinylidene Proteins: Structures and Functions from Archaea to Humans”, Annu. Rev. Cell Dev. Biol, 16 (2000), 365–392 | DOI
[2] E. J.M. Helmreich, K. P. Hofmann, “Structure and function of proteins in G-protein-coupled signal transfer”, BBA, 1286:3 (1996), 285–322 | DOI
[3] Y. Shichida, T. Matsuyama, “Evolution of opsins and phototransduction Phil”, Trans. R. Soc. B, 364:1531 (2009), 2881–2895 | DOI
[4] Y. Shichida, H. Imai, “Visual pigment: G-protein-coupled receptor for light signals”, Cell. Mol. Life Sci, 54 (1998), 1299–1315 | DOI
[5] K. G. Palczewski, “Protein-Coupled Receptor Rhodopsin”, Annual Review of Biochemistry, 75 (2006), 743–767 | DOI
[6] S. T. Menon, M. Han, T. P. Sakmar, “Rhodopsin: Structural Basis of Molecular Physiology”, Physiol. Rev, 81 (2001), 1659–1688 | DOI
[7] T. Lamb, S. Collin, E. N.Jr. Pugh, “Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup”, Nat. Rev. Neurosci, 8 (2007), 960–976 | DOI
[8] F. Rieke, D. A. Baylor, “Origin of Reproducibility in the Responses of Retinal Rods to Single Photons”, Biophysical Journal, 75:4 (1998), 1836–1857 | DOI
[9] T. P. Sakmar, S. T. Menon, E. P. Marin, E. S. Awad, “Rhodopsin: Insights from Recent Structural Studies”, Annual Reviews, 31:1 (2002), 443–484 | DOI
[10] B. Yan, J. L. Spudich, P. Mazur, S. Vunnam, F. Derguini, K. J. Nakanishi, “Spectral Tuning in Bacteriorhodopsin in the Absence of Counterion and Coplanarization Effects”, Biol. Chem, 270:50 (1995), 29668–29670 | DOI
[11] R. S.H. Liu, E. Krogh, X. Y. Li, D. Mead, L. U. Colmenares, J. R. Thiel, J. Ellis, D. Wong, A. E. Asato, “Analyzing the red-shift characteristics of azulenic, naphthyl, other ring-closed and retinyl pigment analogs of bacteriorhodopsin”, Photochem. Photobiol, 58:5 (1993), 701–705 | DOI
[12] G. T. Tomasello, G. Olaso-Gonzalez, P. Altoe, M. Stenta, L. Serrano-Andres, M. Merchan, G. Orlandi, A. Bottoni, M. Garavelli, “Electrostatic Control of the Photoisomerization Efficiency and Optical Properties in Visual Pigments: On the Role of Counterion Quenching”, J. Am. Chem. Soc, 131:14 (2009), 5172–5186 | DOI
[13] M. Wanko, M. Hoffmann, J. Frahmcke, T. Frauenheim, M. Elstner, “Effect of Polarization on the Opsin Shift in Rhodopsins. 2. Empirical Polarization Models for Proteins”, J. Phys. Chem. B, 112:37 (2008), 11468–11478 | DOI
[14] S. Sekharan, M. Sugihara, V. Buss, “Origin of Spectral Tuning in Rhodopsin It Is Not the Binding Pocket”, Angewandte Chemie International Edition, 46:1-2 (2006), 269–271 | DOI
[15] P. B. Coto, A. Strambi, N. Ferre, M. Olivucci, “The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution”, PNAS USA, 103 (2006), 17154–17159 | DOI
[16] M. Wanko, M. Hoffmann, P. Strodel, A. Koslowski, W. Thiel, F. Neese, T. Frauenheim, M. Elstner, “Calculating Absorption Shifts for Retinal Proteins: Computational Challenges”, J. Phys. Chem. B, 109:8 (2005), 3606–3615 | DOI
[17] M. Wanko, M. Hoffmann, T. Frauenheim, M. Elstner, “Computational photochemistry of retinal proteins”, J. Comput. Aided Mol. Des, 20 (2006), 511–518 | DOI
[18] R. R. Birge, R. B. Barlow, “On the molecular origins of thermal noise in vertebrate and invertebrate photoreceptors”, Biophysical Chemistry, 55:1-2 (1995), 115–126 | DOI
[19] P. Tavan, K. Schulten, D. Oesterhelt, “The Effect of Protonation and Electrical Interactions on the Stereochemistry of Retinal Schiff Bases”, Biophysical Journal, 47:3 (1985), 415–430 | DOI
[20] R. R. Birge, L. P. Murray, B. M. Pierce, H. Akita, V. Balogh-Nair, L. A. Findsen, K. Nakanishi, “Two-photon spectroscopy of locked-11-cis-rhodopsin: evidence for a protonated Schiff base in a neutral protein binding site”, PNAS USA, 82 (1985), 4117–4121 | DOI
[21] G. Matthews, “Dark noise in the outer segment membrane current of green rod photoreceptors from toad retina”, The Journal of Physiology, 349:1 (1984), 607–618 | DOI
[22] D. A. Baylor, G. Matthews, K. M. Yau, “Two components of electrical dark noise in toad retinal rod outer segments”, The Journal of Physiology, 309:1 (1980), 591–621 | DOI
[23] D. Polli, P. Altoe, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision”, Nature, 467 (2010), 440–443 | DOI
[24] V. A. Nadtochenko, O. A. Smitienko, T. B. Feldman, M. N. Mozgovaya, I. V. Shelaev, F. E. Gostev, O. M. Sarkisov, M. A. Ostrovsky, “Conical intersection participation in femtosecond dynamics of visual pigment rhodopsin chromophore cis-trans photoisomerization”, Dokl. Biochem. Biophys, 446 (2012), 242–246 | DOI
[25] A. Yabushita, T. Kobayashi, M. Tsuda, “Time-resolved spectroscopy of ultrafast photoisomerization of octopus rhodopsin under photoexcitation”, J. Phys. Chem. B, 116 (2012), 1920–1926 | DOI
[26] L. A. Peteanu, R. W. Schoenlein, Q. Wang, R. A. Mathies, C. V. Shank, “The first step in vision occurs in femtoseconds: complete blue and red spectral studies”, Proc. Natl. Acad. Sci. USA, 90 (1993), 11762–11766 | DOI
[27] T. Mizukami, H. Kandori, Y. Shichida, A. H. Chen, F. Derguini, C. G. Caldwell, C. Biffe, K. Nakanishi, T. Yoshizawa, “Photoisomerization mechanism of the rhodopsin chromophore: picosecond photolysis of pigment containing 11-cis-locked eight-membered ring retinal”, Proc. Natl. Acad. Sci. USA, 90 (1993), 4072–4076 | DOI
[28] H. Kandori, S. Matuoka, Y. Shichida, T. Yoshizawa, M. Ito, K. Tsukida, V. Balogh-Nair, K. Nakanishi, “Mechanism of isomerisation of rhodopsin studied by use of 11-cis-locked rhodopsin analogues excited with a picoseconds laser pulse”, Biochemistry, 28 (1989), 6460–6467 | DOI
[29] R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, C. V. Shank, “The first step in vision: femtosecond isomerization of rhodopsin”, Science, 254 (1991), 412–415 | DOI
[30] H. J. Dartnall, “The photosensitivities of visual pigments in the presence of hydroxylamine”, Vision Res, 8 (1968), 339–358 | DOI
[31] J. Tittor, D. Oesterhelt, “The quantum yield of bacteriorhodopsin”, FEBS Letters, 263:2 (1990), 269–273 | DOI
[32] Y. Furutani, A. Terakita, Y. Shichida, H. Kandori, “FTIR Studies of the Photoactivation Processes in Squid Retinochrome”, Biochemistry, 44:22 (2005), 7988–7997 | DOI
[33] T. Matsuyama, T. Yamashita, Y. Imamoto, Y. Shichida, “Photochemical Properties of Mammalian Melanopsin”, Biochemistry, 51:27 (2012), 5454–5462 | DOI
[34] O. Smitienko, V. Nadtochenko, T. Feldman, M. Balatskaya, I. Shelaev, F. Gostev, O. Sarkisov, M. Ostrovsky, “Femtosecond laser spectroscopy of the rhodopsin photochromic reaction: a concept for ultrafast optical molecular switch creation (ultrafast reversible photoreaction of rhodopsin)”, Molecules, 19 (2014), 18351–18366 | DOI
[35] M. Yan, L. Rothberg, R. Callender, “Femtosecond Dynamics of Rhodopsin Photochemistry Probed by a Double Pump Spectroscopic Approach”, J. Phys. Chem. B, 105:4 (2001), 856–859 | DOI
[36] V. Bazhenov, P. Schmidt, G. H. Atkinson, “Nanosecond photolytic interruption of bacteriorhodopsin photocycle: K-590 BR-570 reaction”, Biophysical Journal, 61:6 (1992), 1630–1637 | DOI
[37] R. Govindjee, S. P. Balashov, T. G. Ebrey, “Quantum efficiency of the photochemical cycle of bacteriorhodopsin”, Biophys. J., 58 (1990), 597–608 | DOI
[38] R. R. Birge, T. M. Cooper, A. F. Lawrence, M. B. Masthay, C. Vasilakis, C. F. Zhang, R. Zidovetzki, “A spectroscopic, photocalorimetric, and theoretical investigation of the quantum efficiency of the primary event in bacteriorhodopsin”, J. Am. Chem. Soc., 111:11 (1989), 4063–4074 | DOI
[39] T. Suzuki, R. H. Callender, “Primary photochemistry and photoisomerization of retinal at 77 degrees K in cattle and squid rhodopsins”, Biophys. J., 34 (1981), 261–270 | DOI
[40] J. Hurley, T. Ebrey, B. Honig, M. Ottolenghi, “Temperature and wavelength effects on the photochemistry of rhodopsin, isorhodopsin, bacteriorhodopsin and their photoproducts”, Nature, 270 (1977), 540–542 | DOI
[41] J. E. Kim, M. E. Tauber, R. A. Mathies, “Wavelength Dependent Cis-Trans Isomerization in Vision”, Biochemistry, 40:46 (2001), 13774–13778 | DOI
[42] Q. Wang, Schoenlein R.W, L. A. Peteanu, R. A. Mathies, C. V. Shank, “Vibrationally coherent photochemistry in the femtosecond primary event of vision”, Science, 266 (1994), 422–424 | DOI
[43] P. J.M. Johnson, A. Halpin, T. Morizumi, V. I. Prokhorenko, O. P. Ernst, R. J.D. Miller, “Local vibrational coherences drive the primary photochemistry of vision”, Nat. Chem, 7 (2015), 980–986 | DOI
[44] C. Schnedermann, M. Liebel, P. Kukura, “Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event”, J. Am. Chem. Soc, 137 (2015), 2886–2891 | DOI
[45] O. A. Smitienko, M. N. Mozgovaya, I. V. Shelaev, F. E. Gostev, T. B. Feldman, V. A. Nadtochenko, O. M. Sarkisov, M. A. Ostrovsky, “Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin”, Biochemistry (Moscow), 75 (2010), 25–35 | DOI
[46] G. A. Worth, L. S. Cederbaum, “Beyond Born-Oppenheimer: molecular dynamics through a conical intersection”, Annu. Rev. Phys. Chem, 55 (2004), 127–158 | DOI
[47] G. G. Kochendoerfer, R. A. Mathies, “Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin”, J. Phys. Chem, 100 (1996), 14526–14532 | DOI
[48] A. G. Doukas, M. R. Junnarkar, R. R. Alfano, R. H. Callender, T. Kakitani, B. Honig, “Fluorescence quantum yield of visual pigments: evidence for subpicosecond isomerization rates”, PNAS USA, 81 (1984), 4790–4794 | DOI
[49] A. V. Guzzo, G. L. Pool, “Visual Pigment Fluorescence”, Science, 159:3812 (1968), 312–314 | DOI
[50] D. Polli, I. Rivalta, A. Nenov, O. Weingart, M. Garavelli, G. Cerullo, “Tracking the primary photoconversion events in rhodopsins by ultrafast optical spectroscopy”, Photochem. Photobiol. Sci, 14 (2015), 213–228 | DOI
[51] T. V. Tscherbul, P. Brumer, “Quantum coherence effects in natural light-induced processes: cis-trans photoisomerization of model retinal under incoherent excitation”, Phys. Chem. Chem. Phys, 17 (2015), 30904–30913 | DOI
[52] I. Rivalta, A. Nenov, O. Weingart, G. Cerullo, M. Garavelli, S. Mukamel, “Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin”, J. Phys. Chem. B, 118 (2014), 8396–8405 | DOI
[53] A. Warshel, “Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture)”, Angew. Chem. Int. Ed. Engl, 53:38 (2014), 10020–10031 | DOI
[54] W. C. Chung, S. Nanbu, T. Ishida, “QM/MM trajectory surface hopping approach to photoisomerization of rhodopsin and isorhodopsin: the origin of faster and more efficient isomerization for rhodopsin”, J. Phys. Chem. B, 116 (2012), 8009–8023 | DOI
[55] O. Weingart, M. Garavelli, “Modelling vibrational coherence in the primary rhodopsin photoproduct”, J. Chem. Phys., 137 (2012), 22A523 | DOI
[56] I. Schapiro, M. N. Ryazantsev, L. M. Frutos, N. Ferre, R. Lindh, M. Olivucci, “The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects”, J. Am. Chem. Soc, 133 (2011), 3354–3364 | DOI
[57] O. Weingart, P. Altoe, M. Stenta, A. Bottoni, G. Orlandi, M. Garavelli, “Product formation in rhodopsin by fast hydrogen motions”, Phys. Chem. Chem. Phys, 13 (2011), 3645–3648 | DOI
[58] M. Abe, Y. Ohtsuki, Y. Fujimura, W. Domcke, “Optimal control of ultrafast cis-trans photoisomerization of retinal in rhodopsin via a conical intersection”, J. Chem. Phys, 123 (2005), 144508 | DOI
[59] R. Gonzalez-Luque, M. Garavelli, F. Bernardi, M. Merchan, M. A. Robb, M. Olivucci, “Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization”, Proc. Natl. Acad. Sci. USA, 97 (2000), 9379–9384 | DOI
[60] R. Callender, “Resonance raman techniques for photolabile samples: Pump-probe and flow”, Methods in Enzymology, 88 (1982), 625–633 | DOI
[61] T. Yoshizawa, Y. Shichida, “Low-temperature spectrophotometry of intermediates of rhodopsin”, Methods in Enzymology, 81 (1982), 333–354 | DOI
[62] S. Kawamura, F. Tokunaga, T. Yoshizawa, A. Sarai, T. Kakitani, “Orientational changes of the transition dipole moment of retinal chromophore on the disk membrane due to the conversion of rhodopsin to bathorhodopsin and to isorhodopsin”, Vision Research, 19:8 (1979), 879–884 | DOI
[63] B. Honig, M. Karplus, “Implications of torsional potential of retinal isomers for visual excitation”, Nature, 229 (1971), 558–560 | DOI
[64] J. E. Kim, R. A. Mathies, “Anti-stokes Raman study of vibrational cooling dynamics in the primary photochemistry of rhodopsin”, J. Phys. Chem. A, 106 (2002), 8508–8515 | DOI
[65] S. W. Lin, M. Groesbeek, I. van der Hoef, P. Verdegem, J. Lugtenburg, R. A. Mathies, “Vibrational assignment of torsional normal modes of rhodopsin: probing excited-state isomerization dynamics along the reactive C$_{11}=C_{12}$ torsion coordinate”, J. Phys. Chem. B, 102 (1998), 2787–2806 | DOI
[66] R. R. Birge, “Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin”, BBA Bioenergetics, 1016:3 (1990), 293–327 | DOI
[67] G. Loppnow, R. Mathies, “Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities”, Biophysical Journal, 54 (1988), 35–43
[68] I. Palings, E. M.M. Van den Berg, J. Lugtenburg, R. A. Mathies, “Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision”, Biochemistry, 28:4 (1989), 1498–1507 | DOI
[69] G. Eyring, R. A. Mathies, “Resonance Raman studies of bathorhodopsin: Evidence for a protonated Schiff base linkage”, PNAS USA, 76 (1979), 33–37 | DOI
[70] U. F. Rohrig, L. Guidoni, A. Laio, I. Frank, U. Rothlisberger, “A Molecular Spring for Vision”, J. Am. Chem. Soc, 126 (2004), 15328–15329 | DOI
[71] H. Nakamichi, T. Okada, “Local peptide movement in the photoreaction intermediate of rhodopsin”, PNAS USA, 103 (2006), 12729–12734 | DOI
[72] T. Okada, I. Le Trong, B. A. Fox, C. A. Behnke, R. E. Stenkamp, K. Palczewski, “X-Ray Diffraction Analysis of Three-Dimensional Crystals of Bovine Rhodopsin”, Journal of Structural Biology, 130:1 (2000), 73–80 | DOI
[73] H. Nakamichi, T. Okada, “Crystallographic analysis of primary visual photochemistry”, Angew. Chem. Int. Ed, 45 (2006), 4270–4273 | DOI
[74] K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. L. Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, M. Miyano, “Crystal structure of rhodopsin: a G protein-coupled receptor”, Science, 289 (2000), 739–745 | DOI
[75] A. Cooper, “Energy uptake in the first step of visual excitation”, Nature, 282 (1979), 531–533 | DOI
[76] Y. Nishioku, M. Nakagawa, M. Tsuda, M. Terazima, “Energetics and Volume Changes of the Intermediates in the Photolysis of Octopus Rhodopsin at a Physiological Temperature”, Biophysical Journal, 83 (2002), 1136–1146 | DOI
[77] S. Sekharan, K. Morokuma, Why 11-cis-Retinal? Why Not 7-cis-, 9-cis-, or 13-cis-Retinal in the Eye?, J. Am. Chem. Soc., 133:47 (2011), 19052–19055 | DOI
[78] X. Li, L. W. Chung, K. Morokuma, “Photodynamics of All-trans Retinal Protonated Schiff Base in Bacteriorhodopsin and Methanol Solution”, J. Chem. Theory Comput., 7 (2011), 2694–2698 | DOI
[79] S. Hayashi, E. Tajkhorshid, K. Schulten, “Photochemical Reaction Dynamics of the Primary Event of Vision Studied by Means of a Hybrid Molecular Simulation”, Biophysical Journal, 96:2 (2009), 403–416 | DOI
[80] A. Strambi, P. B. Coto, L. M. Frutos, N. Ferre, M. Olivucci, “Relationship between the Excited State Relaxation Paths of Rhodopsin and Isorhodopsin”, J. Am. Chem. Soc, 130 (2008), 3382–3388 | DOI
[81] L. M. Frutos, T. Andruniow, F. Santoro, M. Olivucci, “Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry”, PNAS USA, 104 (2007), 7764–7769 | DOI
[82] M. Sugihara, J. Hufen, V. Buss, “Origin and Consequences of Steric Strain in the Rhodopsin Binding Pocket”, Biochemistry, 45 (2006), 801–810 | DOI
[83] J. A. Gascon, E. M. Sproviero, V. S. Batista, “Computational Studies of the Primary Phototransduction Event in Visual Rhodopsin”, Acc. Chem. Res, 39 (2006), 184–193 | DOI
[84] M. Garavelli, “Computational Organic Photochemistry: Strategy, Achievements and Perspectives”, Theor. Chem. Acc, 116 (2006), 87–105 | DOI
[85] A. Cembran, F. Bernardi, M. Olivucci, M. Garavelli, “The retinal chromophore/chloride ion pair: Structure of the photoisomerization path and interplay of charge transfer and covalent states”, PNAS USA, 102 (2005), 6255–6260 | DOI
[86] A. Cembran, F. Bernardi, M. Olivucci, M. Garavelli, “Counterion Controlled Photoisomerization of Retinal Chromophore Models: a Computational Investigation”, J. Am. Chem. Soc, 126 (2004), 16018–16037 | DOI
[87] J. A. Gascon, V. S. Batista, “QM/MM Study of Energy Storage and Molecular Rearrangements Due to the Primary Event in Vision”, Biophysical Journal, 87:5, 2931–2941 | DOI
[88] S. Hayashi, E. Tajkhorshid, K. Schulten, “Molecular Dynamics Simulation of Bacteriorhodopsin's Photoisomerization Using Ab Initio Forces for the Excited Chromophore”, Biophysical Journal, 85:3, 1440–1449 | DOI
[89] A. Warshel, Z. T. Chu, “Nature of the Surface Crossing Process in Bacteriorhodopsin: Computer Simulations of the Quantum Dynamics of the Primary Photochemical Event”, J. Phys. Chem. B, 105 (2001), 9857–9871 | DOI
[90] S. Hahn, G. Stock, “Quantum-Mechanical Modeling of the Femtosecond Isomerization in Rhodopsin”, J. Phys. Chem. B, 104 (2000), 1146–1149 | DOI
[91] T. Yoshizawa, Y. Kito, “Chemistry of the Rhodopsin Cycle”, Nature, 182 (1958), 1604–1605 | DOI
[92] T. Yoshizawa, G. Wald, “Pre-Lumirhodopsin and the Bleaching of Visual Pigments”, Nature, 197 (1963), 1279–1286 | DOI
[93] S. J. Hug, J. W. Lewis, C. M. Einterz, T. E. Thorgeirsson, D. S. Kliger, “Nanosecond photolysis of rhodopsin: evidence for a new blue-shifted intermediate”, Biochemistry, 29 (1990), 1475–1485 | DOI
[94] G. E. Busch, M. L. Applebury, A. A. Lamola, P. M. Rentzepis, “Formation and Decay of Prelumirhodopsin at Room Temperatures”, PNAS USA, 69 (1972), 2802–2806 | DOI
[95] K. Peters, M. L. Applebury, P. M. Rentzepis, “Primary photochemical event in vision: proton translocation”, PNAS, 74 (1977), 3119–3123 | DOI
[96] Y. Fukada, Y. Shichida, T. Yoshizawa, M. Ito, A. Kodama, K. Tsukida, “Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin”, Biochemistry, 23 (1984), 5826–5832 | DOI
[97] J. Buchert, V. Stefancic, A. G. Doukas, R. R. Alfano, R. H. Callender, J. Pande, H. Akita, V. Balogh-Nair, K. Nakanishi, “Picosecond kinetic absorption and fluorescence studies of bovine rhodopsin with a fixed 11-ene”, Biophys. J, 43 (1983), 279–283 | DOI
[98] B. Mao, M. Tsuda, T. G. Ebrey, H. Akita, V. Balogh-Nair, K. Nakanishi, “Flash photolysis and low temperature photochemistry of bovine rhodopsin with a fixed 11-ene”, Biophys. J., 35 (1981), 543–546 | DOI
[99] B. G. Levine, T. M. Martinez, “Isomerization through conical intersections”, Annu. Rev. Phys. Chem, 58 (2007), 613–634 | DOI
[100] S. Hahn, G. Stock, “Femtosecond secondary emission arising from the nonadiabatic photoisomerization in rhodopsin”, Chemical Physics, 259:2-3 (2000), 297–312 | DOI
[101] S. Hahn, G. Stock, “Ultrafast cis-trans photoswitching: A model study”, J. Chem. Phys, 116 (2002), 1085–1091 | DOI
[102] R. S. Liu, L. Y. Yang, J. Liu, “Mechanisms of photoisomerization of polyenes in confined media: from organic glasses to protein binding cavities”, Photochem. Photobiol, 83 (2007), 2–10 | DOI
[103] P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, R. A. Mathies, “Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman”, Science, 310:5750 (2005), 1006–1009 | DOI
[104] V. Lemaitre, P. Yeagle, A. Watts, “Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin”, Biochemistry, 44 (2005), 12667–12680 | DOI
[105] T. Andruniow, N. Ferre, M. Olivucci, “Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level”, PNAS USA, 101 (2004), 17908–17913 | DOI
[106] B. Borhan, M. L. Soutu, H. Imai, Y. Shichida, K. Nakanishi, “Movement of retinal along the visual transduction path”, Science, 288 (2000), 2209–2212 | DOI
[107] R. S.H. Liu, “Photoisomerization by hula-twist: a fundamental supramolecular photochemical reaction”, Acc. Chem. Res, 34 (2001), 555–562 | DOI
[108] S. O. Smith, J. Courtin, H. J.M. de Groot, M. Gebhard, J. Lugtenburg, “13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin”, Biochemistry, 30 (1991), 7409–7415 | DOI
[109] B. Isin, K. Schulten, E. Tajkhorshid, I. Bahar, “Mechanism of signal propagation upon retinal isomerization: insights from molecular dynamics simulations of rhodopsin restrained by normal modes”, Biophys. J., 95 (2008), 789–803 | DOI
[110] A. Yamada, T. Yamato, T. Kakitani, S. Yamamoto, “Torsion potential works in rhodopsin”, Photochem. Photobiol, 79 (2007), 476–486 | DOI
[111] Kh. T. Kholmurodov, T. B. Feldman, M. A. Ostrovsky, “Visual pigment rhodopsin: molecular dynamics of 11-cis-retinal chromophore and amino-acid residues in the chromophore center”, Computer simulation study, Mendeleev comm, 1 (2006), 1–8 | DOI
[112] J. Saam, E. Tajkhorshid, S. Hayashi, K. Schulten, “Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin”, Biophys. J., 83 (2002), 3097–3112 | DOI
[113] U. M. Ganter, E. D. Schmid, D. Perez-Sala, R. R. Rando, F. Siebert, “Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation”, Biochemistry, 28 (1989), 5954–5962 | DOI
[114] M. Han, M. Groesbeek, S. O. Smith, T. P. Sakmar, “Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal”, Biochemistry, 37 (1998), 538–545 | DOI
[115] C. K. Meyer, M. Bohme, A. Ockenfels, W. Gartner, K.P. Hofmann, O. P. Ernst, “Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches”, J. Biol. Chem., 275 (2000), 19713–19718 | DOI
[116] G. G. Kochendoerfer, P. J.E. Verdegem, I. van der Hoef, J. Lugtenburg, R. A. Mathies, “Retinal Analog Study of the Role of Steric Interactions in the Excited State Isomerization Dynamics of Rhodopsin”, Biochemistry, 35 (1996), 16230–16240 | DOI
[117] V. D. Lakhno, A. S. Shigaev, T. B. Feldman, V. A. Nadtochenko, M. A. Ostrovskii, “Kvantovo-klassicheskaya model reaktsii fotoizomerizatsii retinalya v zritelnom pigmente rodopsine”, DAN, 471 (2016), 604–608 | DOI
[118] A. S. Shigaev, T. B. Feldman, V. A. Nadtochenko, M. A. Ostrovskii, V. D. Lakhno, “Issledovanie fotoizomerizatsii khromofora rodopsina na osnove kvantovo-klassicheskoi modeli”, Matematicheskaya biologiya i bioinformatika, 13:1 (2018), 169–186 | DOI
[119] A. S. Shigaev, T. B. Feldman, V. A. Nadtochenko, M. A. Ostrovsky, V. D. Lakhno, “Quantum-classical modeling of rhodopsin photoisomerization”, Keldysh Institute Preprints, 2018, 027, 28 pp. | DOI
[120] A. S. Shigaev, T. B. Feldman, V. A. Nadtochenko, M. A. Ostrovsky, V. D. Lakhno, “Quantum-classical model of the rhodopsin retinal chromophore cis-trans photoisomerization with modified inter-subsystem coupling”, Computational and Theoretical Chemistry, 1181 (2020) | DOI
[121] T. Holstein, “Studies of polaron motion. Part I: The molecular-crystal model”, Ann. Phys, 8 (1959), 325–342 | DOI
[122] A. S. Davydov, “The theory of contraction of proteins under their excitation”, J. Theor. Biology, 38 (1973), 559–569 | DOI
[123] A. S. Davydov, “Solitons and energy transfer along protein molecules”, J. Theor. Biology, 66 (1977), 379–387 | DOI
[124] Bernassoni J. (ed.), Physics in One Dimension, Springer series in solid-state sciences, 23, Springer-Verlag, 1981
[125] Y. Okahata, T. Kobayashi, K. Tanaka, M. J. Shimomura, “Anisotropic Electric Conductivity in an Aligned DNA Cast Film”, J. Am. Chem. Soc., 120 (1998), 6165–6166 | DOI
[126] Starikov E. B., J. P. Lewis, S. Tanaka (eds.), Modern Methods for Theoretical Physical Chemistry of Biopolymers, Elsevier, 2006
[127] T. Cramer, T. Steinbrecher, A. Labahn, T. Koslowski, “Static and dynamic aspects of DNA charge transfer: a theoretical perspective”, Phys. Chem. Chem. Phys, 7 (2005), 4039–4050 | DOI
[128] V. D. Lakhno, “Oscilations in the primary charge separation in bacterial photosynthesis”, Phys. Chem. Chem. Phys, 4 (2002), 2246–2250 | DOI
[129] V. D. Lakhno, “Dynamical theory of primary processes of charge separation in the photosynthetic reaction center”, J. Biol. Phys, 31 (2005), 145–159 | DOI
[130] S. Komineas, G. Kalosakas, A. R. Bishop, “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Phys. Rev. E, 65 (2002), 061905 | DOI
[131] P. Maniadis, G. Kalosakas, K. O. Rasmussen, A. R. Bishop, “AC conductivity in a DNA charge transport model”, Phys. Rev. E, 72 (2005), 021912 | DOI
[132] E. Diaz, R. P.A. Lima, F. Dominguez-Adame, “Bloch-like oscillations in the Peyrard-Bishop-Holstein model”, Phys. Rev. B, 78 (2008), 134303 | DOI
[133] B. Montgomery Pettitt, “Combined hopping-superexchange model of a hole transfer in DNA”, Chem. Phys. Lett, 400 (2004), 47–53 | DOI
[134] A. S. Shigaev, O. A. Ponomarev, V. D. Lakhno, “A new approach to microscopic modeling of a hole transfer in heteropolymer DNA”, Chem. Phys. Lett, 513 (2011), 276–279 | DOI
[135] A. N. Korshunova, V. D. Lakhno, “A new type of localized fast moving electronic excitations in molecular chains”, Physica E, 60 (2014), 206–209 | DOI
[136] N. S. Fialko, V. D. Lakhno, “Nonlinear dynamics of excitations in DNA”, Phys. Lett. A, 278 (2000), 108–112 | DOI
[137] J. Liu, M. Y. Liu, J. B. Nguyen, A. Bhagat, V. Mooney, E. C.Y. Yan, “Thermal Decay of Rhodopsin: Role of Hydrogen Bonds in Thermal Isomerization of 11-cis Retinal in the Binding Site and Hydrolysis of Protonated Schiff Base”, J. Am. Chem. Soc, 131 (2009), 8750–8751 | DOI
[138] T. Okada, M. Sugihara, A. N. Bondar, M. Elstner, P. Entel, V. Buss, “The Retinal Conformation and its Environment in Rhodopsin in Light of a New 2.2A Crystal Structure”, Journal of Molecular Biology, 342:2 (2004), 571–583 | DOI
[139] K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, M. Miyano, “Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor”, Science, 289:5480 (2000), 739–745 | DOI
[140] T. Nagata, A. Terakita, H. Kandori, Y. Shichida, A. Maeda, “The Hydrogen-Bonding Network of Water Molecules and the Peptide Backbone in the Region Connecting Asp83, Gly120, and Glu113 in Bovine Rhodopsin”, Biochemistry, 37 (1998), 17216–17222 | DOI
[141] T. Nagata, A. Terakita, H. Kandori, D. Kojima, Y. Shichida, A. Maeda, “Water and Peptide Backbone Structure in the Active Center of Bovine Rhodopsin”, Biochemistry, 36 (1997), 6164–6170 | DOI