Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2022_17_2_a15, author = {G. P. Neverova and O. L. Zhdanova}, title = {Comparative dynamics analysis of simple mathematical models of the plankton communities considering various types of response function}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {465--480}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a15/} }
TY - JOUR AU - G. P. Neverova AU - O. L. Zhdanova TI - Comparative dynamics analysis of simple mathematical models of the plankton communities considering various types of response function JO - Matematičeskaâ biologiâ i bioinformatika PY - 2022 SP - 465 EP - 480 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a15/ LA - ru ID - MBB_2022_17_2_a15 ER -
%0 Journal Article %A G. P. Neverova %A O. L. Zhdanova %T Comparative dynamics analysis of simple mathematical models of the plankton communities considering various types of response function %J Matematičeskaâ biologiâ i bioinformatika %D 2022 %P 465-480 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a15/ %G ru %F MBB_2022_17_2_a15
G. P. Neverova; O. L. Zhdanova. Comparative dynamics analysis of simple mathematical models of the plankton communities considering various types of response function. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 465-480. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a15/
[1] F. Carlotti, J. Giske, F. Werner, “Modeling zooplankton dynamics”, ICES zooplankton methodology manual, Academic Press, 2000, 571–667
[2] S. G. Leles, J. E.L. Valentin, G. M. Figueiredo, “Evaluation of the complexity and performance of marine planktonic trophic models”, Anais da Academia Brasileira de Ciencias, 88 (2016), 1971–1991
[3] S. V. Berdnikov, V. V. Selyutin, F. A. Surkov, Yu. V. Tyutyunov, “Modelirovanie morskikh ekosistem: opyt, sovremennye podkhody, napravleniya razvitiya (obzor). Chast 2. Modeli populyatsii i trofodinamiki”, Morskoi gidrofizicheskii zhurnal, 38:2 (2022), 196–217 | DOI
[4] M. Scheffer, S. Rinaldi, Y. A. Kuznetsov, “Effects of fish on plankton dynamics: a theoretical analysis”, Canadian Journal of Fisheries and Aquatic Sciences, 57:6 (2000), 1208–1219
[5] A. B. Medvinsky, I. A. Tikhonova, R. R. Aliev, B. L. Li, Z. S. Lin, H. Malchow, “Patchy environment as a factor of complex plankton dynamics”, Physical Review E, 64:2 (2001), 021915 | DOI
[6] J. Chattopadhayay, R. R. Sarkar, S. Mandal, “Toxin-producing plankton may act as a biological control for planktonic blooms field study and mathematical modelling”, Journal of Theoretical Biology, 215:3 (2002), 333–344
[7] Z. Zhang, M. Rehim, “Global qualitative analysis of a phytoplankton-zooplankton model in the presence of toxicity”, International Journal of Dynamics and Control, 5:3 (2017), 799–810
[8] Yu. M. Svirezhev, D. O. Logofet, Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp.
[9] Yu. M. Svirezhev, Nonlinearities in mathematical ecology: Phenomena and models. Would we live in Volterra's world?, Ecological Modelling, 216 (2008), 89–101
[10] Yu. V. Tyutyunov, L. I. Titova, F. A. Surkov, E. N. Bakaeva, “Troficheskaya funktsiya kolovratok-fitofagov (Rotatoria). Eksperiment i modelirovanie”, Zhurnal obschei biologii, 71:1 (2010), 52–62
[11] M. W. Adamson, A. Y. Morozov, “When can we trust our model predictions? Unearthing structural sensitivity in biological systems”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469:2149 (2013), 20120500 | DOI
[12] Yu. V. Tyutyunov, L. I. Titova, “Ot Lotki-Volterra k Arditi-Ginzburgu: 90 let evolyutsii troficheskikh funktsii”, Zhurnal obschei biologii, 79:6 (2018), 428–448
[13] E. E. Giricheva, “Vliyanie troficheskikh otnoshenii v soobschestve planktona na ego prostranstvenno-vremennuyu dinamiku”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 393–405 | DOI
[14] A. B. Medvinskii, B. V. Adamovich, A. V. Rusakov, D. A. Tikhonov, N. I. Nurieva, V. M. Tereshko, “Dinamika populyatsii: matematicheskoe modelirovanie i realnost”, Biofizika, 64:6 (2019), 1169–1192
[15] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 182 pp.
[16] P. A. Abrams, L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends in Ecology Evolution, 15:8 (2000), 337–341
[17] A. I. Abakumov, S. Ya. Pak, M. A. Morozov, A. K. Tynybekov, “Modelnaya otsenka biomassy fitoplanktona oz. Issyk-Kul po dannym distantsionnogo zondirovaniya”, Biologiya vnutrennikh vod, 4 (2019), 90–97 | DOI
[18] Yu. V. Shambarova, I. E. Stepochkin, S. P. Zakharkov, “Verifikatsiya VGPM i K modelei pervichnoi produktsii v severo-zapadnoi chasti Yaponskogo morya po sudovym i sputnikovym dannym”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 16:2 (2019), 186–195
[19] A. I. Abakumov, Yu. G. Izrailskii, “Modeli raspredeleniya fitoplanktona po khlorofillu v raznykh usloviyakh sredy obitaniya. Otsenka bioproduktivnosti vodnoi ekosistemy”, Kompyuternye issledovaniya i modelirovanie, 13:6 (2021), 1177–1190 | DOI
[20] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151
[21] G. P. Neverova, O. L. Zhdanova, A. I. Abakumov, “Diskretnaya model sezonnogo tsveteniya planktona”, Matematicheskaya biologiya i bioinformatika, 15:2 (2020), 235–250 | DOI
[22] E. Ya. Frisman, O. L. Zhdanova, M. P. Kulakov, G. P. Neverova, O. L. Revutskaya, “Matematicheskoe modelirovanie populyatsionnoi dinamiki na osnove rekurrentnykh uravnenii: rezultaty i perspektivy. Chast I”, Izvestiya RAN. Seriya biologicheskaya, 2021, no. 1, 3–18
[23] R. Arditi, L. R. Ginzburg, “Coupling in predator-prey dynamics: ratio-dependence”, J. Theor. Biol, 139:3 (1989), 311–326
[24] Y. H. Fan, W. T. Li, “Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response”, Journal of Mathematical Analysis and Applications, 299:2 (2004), 357–374
[25] R. Liu, J. Gao, “Permanence for a delayed discrete ratio-dependent N-species predator-prey system with Holling-type II functional response”, Mathematical and Computer Modelling, 2010 | DOI
[26] F. Berezovskaya, G. Karev, R. Arditi, “Parametric analysis of the ratio-dependent predator-prey model”, Journal of Mathematical Biology, 43:3 (2001), 221–246
[27] A. Morozov, E. Arashkevich, M. Reigstad, S. Falk-Petersen, “Influence of spatial heterogeneity on the type of zooplankton functional response: a study based on field observations”, Deep Sea Research Part II: Topical Studies in Oceanography, 55:20-21 (2008), 2285–2291
[28] X. Irigoien, K. J. Flynn, R. P. Harris, Phytoplankton blooms: a 'loophole'in microzooplankton grazing impact?, Journal of Plankton Research, 27:4 (2005), 313–321
[29] A. Morozov, K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, A. Hastings, Y. C. Lai, S. V. Petrovskii, K. Scranton, M. L. Zeeman, “Long transients in ecology: Theory and applications”, Physics of Life Reviews, 32 (2020), 1–40