Comparative dynamics analysis of simple mathematical models of the plankton communities considering various types of response function
Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 465-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a two-component discrete-time model of the plankton community, taking into account features of the development and interaction of phytoplankton and zooplankton. To describe the interaction between these species and to compare the system dynamics, we use the following set of response functions: type II and III Holling function and the Arditi–Ginzburg response function, each of which describes trophic interactions between phytoplankton and zooplankton. An analytical and numerical study of the model proposed is made. The analysis shows that the variation of trophic functions does not change the dynamic behavior of the model fundamentally. The stability loss of nontrivial fixed point corresponding to the coexistence of phytoplankton and zooplankton can occur through a cascade of period-doubling bifurcations and according to the Neimark–Saker scenario, which allows us to observe the appearance of long-period oscillations representing the alternation of peaks and reduction in the number of species as a result of the predator-prey interaction. As well, the model has multistability areas, where a variation in initial conditions with the unchanged values of all model parameters can result in a shift of the current dynamic mode. Each of the models is shown to demonstrate conditional coexistence when a variation of the current community structure can lead to the extinction of the entire community or its part. Considering the characteristics of the species composition, the model with the type II Holling function seems a more suitable for describing the dynamics of the plankton community. Such a system is consistent with the idea that phytoplankton is a fast variable and predator dynamics is slow; thus, long-period fluctuations occur at high phytoplankton growth rates and low zooplankton ones. The model with the Arditi–Ginzburg functional response demonstrates quasi-periodic fluctuations in a narrow parametric aria with a high predator growth rate and low prey growth rate. The quasi-periodic dynamics regions in the model with the Holling type III functional response correspond to the conception of fast and slow variables, however in this case, the stability of the system increases, and the Neimark-Sacker bifurcation occurs even at a higher growth rate of zooplankton.
@article{MBB_2022_17_2_a15,
     author = {G. P. Neverova and O. L. Zhdanova},
     title = {Comparative dynamics analysis of simple mathematical models of the plankton communities considering various types of response function},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {465--480},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a15/}
}
TY  - JOUR
AU  - G. P. Neverova
AU  - O. L. Zhdanova
TI  - Comparative dynamics analysis of simple mathematical models of the plankton communities considering various types of response function
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2022
SP  - 465
EP  - 480
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a15/
LA  - ru
ID  - MBB_2022_17_2_a15
ER  - 
%0 Journal Article
%A G. P. Neverova
%A O. L. Zhdanova
%T Comparative dynamics analysis of simple mathematical models of the plankton communities considering various types of response function
%J Matematičeskaâ biologiâ i bioinformatika
%D 2022
%P 465-480
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a15/
%G ru
%F MBB_2022_17_2_a15
G. P. Neverova; O. L. Zhdanova. Comparative dynamics analysis of simple mathematical models of the plankton communities considering various types of response function. Matematičeskaâ biologiâ i bioinformatika, Tome 17 (2022) no. 2, pp. 465-480. http://geodesic.mathdoc.fr/item/MBB_2022_17_2_a15/

[1] F. Carlotti, J. Giske, F. Werner, “Modeling zooplankton dynamics”, ICES zooplankton methodology manual, Academic Press, 2000, 571–667

[2] S. G. Leles, J. E.L. Valentin, G. M. Figueiredo, “Evaluation of the complexity and performance of marine planktonic trophic models”, Anais da Academia Brasileira de Ciencias, 88 (2016), 1971–1991

[3] S. V. Berdnikov, V. V. Selyutin, F. A. Surkov, Yu. V. Tyutyunov, “Modelirovanie morskikh ekosistem: opyt, sovremennye podkhody, napravleniya razvitiya (obzor). Chast 2. Modeli populyatsii i trofodinamiki”, Morskoi gidrofizicheskii zhurnal, 38:2 (2022), 196–217 | DOI

[4] M. Scheffer, S. Rinaldi, Y. A. Kuznetsov, “Effects of fish on plankton dynamics: a theoretical analysis”, Canadian Journal of Fisheries and Aquatic Sciences, 57:6 (2000), 1208–1219

[5] A. B. Medvinsky, I. A. Tikhonova, R. R. Aliev, B. L. Li, Z. S. Lin, H. Malchow, “Patchy environment as a factor of complex plankton dynamics”, Physical Review E, 64:2 (2001), 021915 | DOI

[6] J. Chattopadhayay, R. R. Sarkar, S. Mandal, “Toxin-producing plankton may act as a biological control for planktonic blooms field study and mathematical modelling”, Journal of Theoretical Biology, 215:3 (2002), 333–344

[7] Z. Zhang, M. Rehim, “Global qualitative analysis of a phytoplankton-zooplankton model in the presence of toxicity”, International Journal of Dynamics and Control, 5:3 (2017), 799–810

[8] Yu. M. Svirezhev, D. O. Logofet, Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp.

[9] Yu. M. Svirezhev, Nonlinearities in mathematical ecology: Phenomena and models. Would we live in Volterra's world?, Ecological Modelling, 216 (2008), 89–101

[10] Yu. V. Tyutyunov, L. I. Titova, F. A. Surkov, E. N. Bakaeva, “Troficheskaya funktsiya kolovratok-fitofagov (Rotatoria). Eksperiment i modelirovanie”, Zhurnal obschei biologii, 71:1 (2010), 52–62

[11] M. W. Adamson, A. Y. Morozov, “When can we trust our model predictions? Unearthing structural sensitivity in biological systems”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469:2149 (2013), 20120500 | DOI

[12] Yu. V. Tyutyunov, L. I. Titova, “Ot Lotki-Volterra k Arditi-Ginzburgu: 90 let evolyutsii troficheskikh funktsii”, Zhurnal obschei biologii, 79:6 (2018), 428–448

[13] E. E. Giricheva, “Vliyanie troficheskikh otnoshenii v soobschestve planktona na ego prostranstvenno-vremennuyu dinamiku”, Matematicheskaya biologiya i bioinformatika, 14:2 (2019), 393–405 | DOI

[14] A. B. Medvinskii, B. V. Adamovich, A. V. Rusakov, D. A. Tikhonov, N. I. Nurieva, V. M. Tereshko, “Dinamika populyatsii: matematicheskoe modelirovanie i realnost”, Biofizika, 64:6 (2019), 1169–1192

[15] A. D. Bazykin, Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985, 182 pp.

[16] P. A. Abrams, L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends in Ecology Evolution, 15:8 (2000), 337–341

[17] A. I. Abakumov, S. Ya. Pak, M. A. Morozov, A. K. Tynybekov, “Modelnaya otsenka biomassy fitoplanktona oz. Issyk-Kul po dannym distantsionnogo zondirovaniya”, Biologiya vnutrennikh vod, 4 (2019), 90–97 | DOI

[18] Yu. V. Shambarova, I. E. Stepochkin, S. P. Zakharkov, “Verifikatsiya VGPM i K modelei pervichnoi produktsii v severo-zapadnoi chasti Yaponskogo morya po sudovym i sputnikovym dannym”, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 16:2 (2019), 186–195

[19] A. I. Abakumov, Yu. G. Izrailskii, “Modeli raspredeleniya fitoplanktona po khlorofillu v raznykh usloviyakh sredy obitaniya. Otsenka bioproduktivnosti vodnoi ekosistemy”, Kompyuternye issledovaniya i modelirovanie, 13:6 (2021), 1177–1190 | DOI

[20] E. Ya. Frisman, M. P. Kulakov, O. L. Revutskaya, O. L. Zhdanova, G. P. Neverova, “Osnovnye napravleniya i obzor sovremennogo sostoyaniya issledovanii dinamiki strukturirovannykh i vzaimodeistvuyuschikh populyatsii”, Kompyuternye issledovaniya i modelirovanie, 11:1 (2019), 119–151

[21] G. P. Neverova, O. L. Zhdanova, A. I. Abakumov, “Diskretnaya model sezonnogo tsveteniya planktona”, Matematicheskaya biologiya i bioinformatika, 15:2 (2020), 235–250 | DOI

[22] E. Ya. Frisman, O. L. Zhdanova, M. P. Kulakov, G. P. Neverova, O. L. Revutskaya, “Matematicheskoe modelirovanie populyatsionnoi dinamiki na osnove rekurrentnykh uravnenii: rezultaty i perspektivy. Chast I”, Izvestiya RAN. Seriya biologicheskaya, 2021, no. 1, 3–18

[23] R. Arditi, L. R. Ginzburg, “Coupling in predator-prey dynamics: ratio-dependence”, J. Theor. Biol, 139:3 (1989), 311–326

[24] Y. H. Fan, W. T. Li, “Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response”, Journal of Mathematical Analysis and Applications, 299:2 (2004), 357–374

[25] R. Liu, J. Gao, “Permanence for a delayed discrete ratio-dependent N-species predator-prey system with Holling-type II functional response”, Mathematical and Computer Modelling, 2010 | DOI

[26] F. Berezovskaya, G. Karev, R. Arditi, “Parametric analysis of the ratio-dependent predator-prey model”, Journal of Mathematical Biology, 43:3 (2001), 221–246

[27] A. Morozov, E. Arashkevich, M. Reigstad, S. Falk-Petersen, “Influence of spatial heterogeneity on the type of zooplankton functional response: a study based on field observations”, Deep Sea Research Part II: Topical Studies in Oceanography, 55:20-21 (2008), 2285–2291

[28] X. Irigoien, K. J. Flynn, R. P. Harris, Phytoplankton blooms: a 'loophole'in microzooplankton grazing impact?, Journal of Plankton Research, 27:4 (2005), 313–321

[29] A. Morozov, K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, A. Hastings, Y. C. Lai, S. V. Petrovskii, K. Scranton, M. L. Zeeman, “Long transients in ecology: Theory and applications”, Physics of Life Reviews, 32 (2020), 1–40